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 Foreword

This text is primarly written for those involved in protocol specification or in the implemnentation
of ASN.1-based protocols.  It is expected, however, that it will be of interest and use to a wider
audience including managers, students, and simply the intellectually curious.

The Introduction which follows should be at least scanned by all readers, and ends with a
discussion of the structure of the text.  Thereafter, readers generally have a reasonable degree of
freedom to take sections and chapters in any order they choose, and to omit some (or many) of
them, although for those with little knowledge about ASN.1 it would be sensible to read the whole
of Section I first, in the order presented.

Here is a rough guide to what the different types of reader might want to tackle:

• Managers:  Those responsible for taking decisions related to possible use of ASN.1 as a
notation for protocol specification, or responsible for managing teams implementing
protocols defined using ASN.1, should read Section I ("ASN.1 Overview"),  and need read
no further, although Section IV ("History and Applications") might also be of interest.
This would also apply to those curious about ASN.1 and wanting a short and and fairly
readable introduction to it.

• Protocol specifiers:  For those designing and specifying protocols, much of Section I
("ASN.1 Overview") and Section IV ("History and Applications") should be scanned in
order to determine whether or not to use ASN.1 as a specification language, but Section II
("Further details") is very important for this group.

• Implementors using an ASN.1 tool:  For this group, Section I ("ASN.1 in Brief") and
Section II ("Further Details") will suffice.

• Implementors doing hand-encodings:  (or those who may be developing ASN.1 tools)
must supplement the above sections by a careful reading of Section III ("Encodings") and
indeed of the actual ITU-T Recommendations/ISO Standards for ASN.1.

• Students on courses covering protocol specification techniques:  Undergraduate and
postgraduate courses aiming to give their students an understanding of the abstract syntax
approach to protocol specification (and perhaps of ASN.1 itself) should place the early
parts of Section I ("ASN.1 Overview") and some of Section IV ("History and
Applications") on the reading list for the course.

• The intellectually curious:  Perhaps this group will read the whole text from front to back
and find it interesting and stimulating!  Attempts have been made wherever possible to
keep the text light and readable - go to it!

There is an electronic version of this text available, and a list of further ASN.1-related resources,
at the URL given in Appendix 5.  And importantly, errata sheets will be provided at this site
for down-loading.

The examples have all been verified using the "OSS ASN.1 Tools" package produced and marketed
by Open Systems Solutions (OSS), a US company that has (since 1986) developed and marketed
tools to assist in the implementation of protocols defined using ASN.1.  I am grateful to OSS for
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much support in the production of this book, and for the provision of their tool for this purpose.
Whilst OSS has given support and encouragement in many forms, and has provided a number of
reviewers of the text who have made very valued comments on early drafts, the views expressed in
this text are those of the author alone.

John Larmouth  (j.larmouth@iti.salford.ac.uk)

May 1999
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Introduction

Summary:

This introduction:

• describes the problem ASN.1 addresses,

• briefly says what ASN.1 is,

• explains why it is useful.

1  The global communications infrastructure

We are in a period of rapid advance in the collaboration of computer systems to perform a wider
range of activity than ever before.  Traditional computer communications to support human-driven
remote logon, e-mail, file-transfer, and latterly the World-Wide Web (WWW) are being
supplemented by new applications requiring increasingly complex exchanges of information
between computer systems and between appliances with embedded computer chips.

Some of these exchanges of information continue to be human-initiated, such as bidding at
auctions, money wallet transfers, electronic transactions, voting support, or interactive video.
Others are designed for automatic and autonomous computer-to-computer communication in
support of such diverse activities as cellular telephones (and other telephony applications), meter
reading, pollution recording, air traffic control, control of power distribution, and applications in
the home for control of appliances.

In all cases there is a requirement for the detailed specification of the exchanges the computers are
to perform, and for the implementation of software to support those exchanges.

The most basic support for many of these exchanges today is provided by the use of TCP/IP and
the Internet, but other carrier protocols are still in use, particularly in the telecommunications area.
However, the specification of the data formats for messages that are to be passed using TCP (or
other carriers) requires the design and clear specification of application protocols, followed by (or
in parallel with) implementation of those protocols.

For communication to be possible between applications and devices produced by different vendors,
standards are needed for these application protocols.  The standards may be produced by
recognised international bodies such as the International Telecommunications Union
Telecommunications Standards Sector (ITU-T), the International Standards Organization (ISO), or
the Internet Engineering Task Force (IETF), or by industrial associations or collaborative groups
and consortia such as the International Civil Aviation Organization (ICAO), the Open Management
Group (OMG) or the Secure Electronic Transactions (SET) consortium, or by individual multi-
national organizations such as Reuters or IBM.

These different groups have various approaches to the task of specifying the communications
standards, but in many cases ASN.1 plays a key role by enabling:
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• Rapid and precise specification of computer exchanges by a standardization body.

• Easy and bug-free implementation of the resulting standard by those producing products to
support the application.

In a number of industrial sectors, but particularly in the telecommunications sector, in security-
related exchanges, and in multimedia exchanges, ASN.1 is the dominant means of specifying
application protocols.  (The only other major contender is the character-based approach often used
by IETF, but which is less suitable for complex structures, and which usually produces a much
less compact set of encodings).  A description of some of the applications where ASN.1 has been
used as the specification language is given in Chapter of Section IV.

2  What exactly is ASN.1?

The term "TCP/IP" can be used to describe two protocol specifications (Transmission Control
Protocol - TCP, and Internet Protocol - IP), or more broadly to describe the complete set of
protocols and supporting software that are based around TCP/IP.  Similarly, the term "ASN.1" can
be used narrowly to describe a notation or language called "Abstract Syntax Notation One", or can
be used more broadly to describe the notation, the associated encoding rules, and the software tools
that assist in its use.

The things that make ASN.1 important, and unique, are:

• It is an internationally-standardised, vendor-independent, platform-independent and
language-independent notation for specifying data-structures at a high level of abstraction.
(The notation is described in Sections I and II).

• It is supported by rules which determine the precise bit-patterns (again platform-
independent and language-independent) to represent values of these data-structures when
they have to be transferred over a computer network, using encodings that are not
unnecessarily verbose.  (The encoding rules are described in Section III).

• It is supported by tools available for most platforms and several programming languages
that map the ASN.1 notation into data-structure definitions in a computer programming
language of choice, and which support the automatic conversion between values of those
data-structures in memory and the defined bit-patterns for transfer over a communications
line.  (The tools are described in Chapter 6 of Section I).

There are a number of other subtle features of ASN.1 that are important and are discussed later in
this text.  Some of these are:

• It addresses the problem of, and provides support for, interworking between deployed
"version 1" systems and "version 2" systems that are designed and deployed many years
apart.  (This is called "extensibility").

• It provides mechanisms to enable partial or generic specification by one standards group,
with other standards groups developing (perhaps in very different ways) specific
specifications.
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Identification of an application area, establishment of
consortia and working groups, decision to proceed with
a specification.

Identification of the information flows required to support
the application, at a high level of abstraction.

Discussion and agreement on a notation or mechanism to
enable the clear specification of the formats of messages
to be used for this application.

 Not
ASN.1

Specify data-structures or classes using the ASN.1 notation
to carry the required semantics, and write text for the associated
rules for sending and action on receiving the messages.

Iterate, refine, note trial implementation results, standardise.

  End of initial
  specification
  stage.

Multiple implementation groups,
different  languages, different platforms.

Map ASN.1 data-structures to chosen
language, preferably using an ASN.1
compiler.

Write code to implement rules for
sending messages (or actions on receipt)
using values in defined data-structures.

        Compile complete application with calls to ASN.1 compiler run-time routines to
        encode values in data-structures into binary messages, and to decode incoming
        messages into data-structure values.

Deploy resulting systems.

The development process with ASN.1
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• It recognises the potential for interworking problems between large systems capable of
handling long strings, large integer values, large iterative structures, and small systems
that may have a lesser capability.

• It provides a range of data-structures which is generally much richer than that of normal
programming languages, such as the size of integers, naming structures, and character
string types.  This enables precision in the specification of the range of values that need to
be transferred, and hence production of more optimal encodings.

3  The development process with ASN.1

The flow diagram illustrates the development process from inception to deployment of initial
systems.

(But it must be remembered that this process is frequently an iterative one, with both early
revisions by the standardization group to "get it right" and with more substantial revisions some
years later when a "version 2" standard is produced.)

Some key points to note from the diagram:

• The decision to employ ASN.1 as the notation for defining a standard is a key one.  It
requires a good understanding of the ASN.1 notation by the standardization group, but
provides a rich set of facilities for a clear specification.  Alternative means of protocol
specification are discussed in Chapter 1 of Section I.

• There is no need for the standardization group (or implementors) to be concerned with the
detailed bit-patterns to be used to communicate the desired semantics:  details of encoding
are "hidden" in the ASN.1 encoding rule specifications and in the run-time support
provided by the ASN.1 tools.

• The implementation task is a simple one:  the only code that needs to be written (and
debugged and tested) is the code to perform the semantic actions required of the
application.  There is no need to write and debug complex parsing or encoding code.

4  Structure of the text.

Section I covers the most commonly encountered features of the ASN.1 notation.  It also briefly
introduces all other aspects of the notation, with full coverage in Section II.  It is intended that
those who are not primarily responsible for writing specifications using ASN.1 or for coding
implementations, but who need a basic understanding to assist in or to manage development (of
standards or implementations), will obtain all that they need from Section I.  Those with primary
responsibility for writing or coding will need Section II also.

Section III describes the principles behind the ASN.1 encoding rules, and much of the detail.
However, this text is really only for the curious!  There is no need for standards' writers or coders
to know about these encodings (provided that a tool is used for the implementation).



© OS, 31 May 1999 19

Section IV completes the text (apart from various supporting appendices) by giving some details of
the history of ASN.1, and of the applications that have been specified using it.

A detailed treatment of ASN.1 is a fairly "heavy" subject, but I have tried to inject just a little
lightness and humour where possible.  Skip what you wish, read what interests you, but please,
enjoy!
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SECTION I

ASN.1 Overview
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Chapter 1
Specification of protocols

(Or: Simply saying simply what has to be said!)

Summary:

This chapter:

• introduces the concept of a "protocol" and its specification,

• provides an early introduction to the concepts of

–  layering,

–  extensibility,

– abstract and transfer syntaxes,

• discusses means of protocol specification,

• describes common problems that arise in designing specification mechanisms and
notations.

(Readers involved in protocol specification should be familiar with much of the early
"concepts" material in this Chapter, but may find that it provides a new and perhaps
illuminating perspective on some of the things they have been trying to do.)

1  What is a protocol?

A computer protocol can be defined as:

A well-defined set of messages (bit-patterns or - increasingly today - octet strings) each of
which carries a defined meaning (semantics), together with the rules governing when a
particular message can be sent.

However, a protocol rarely stands alone.  Rather, it is commonly part of a "protocol stack", in
which several separate specifications work together to determine the complete message emitted by
a sender, with some parts of that message destined for action by intermediate (switching) nodes,
and some parts intended for the remote end system.

In this "layered" protocol technique:
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• One specification determines the form and meaning of the outer part of the message,
with a "hole" in the middle.  It provides a "carrier service" (or just "service") to convey
any material that is placed in this "hole".

• A second specification defines the contents of the "hole", perhaps leaving a further hole
for another layer of specification, and so on.

Figure 1 illustrates a TCP/IP stack, where real networks provide the basic carrier mechanism, with
the IP protocol carried in the “hole” they provide, and with IP acting as a carrier for TCP (or the
the less well-known User Datagram Protocol - UDP), forming another protocol layer, and with a
(typically for TCP/IP) monolithic application layer - a single specification completing the final
“hole”

The precise nature of the "service" provided by a lower layer - lossy, secure, reliable - and of any
parameters controlling that service, needs to be known before the next layer up can make
appropriate use of that service.

We usually refer to each of these individual specification layers as "a protocol", and hence we can
enhance our definition:

What is a protocol?What is a protocol?

  A well-defined set of messages, each of which carries a defined meaning, and,A well-defined set of messages, each of which carries a defined meaning, and,

  The rules governing when a particular  message can be sent, and  The rules governing when a particular  message can be sent, and

  Explicit assumptions about the nature of the service used to transfer the messages,  Explicit assumptions about the nature of the service used to transfer the messages,
which themselves either support a single end-application or provide a richer carrierwhich themselves either support a single end-application or provide a richer carrier
service.service.

“Real”
Networks
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header

Cyclic
Redundancy
Check

“Hole”

IP or Network
Layer

IP
header “Hole”

TCP
header “Hole”

Application
Message

TCP or
Transport
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Application
Layer

Figure 1:  Sample protocol stack - TCP/IP
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Note that in figure 1, the “hole” provided by the IP carrier can contain either a TCP message or a
UDP message - two very different protocols with different properties (and themselves providing a
further carrier service).  Thus one of the advantages of "layering" is in reusability of the carrier
service to support a wide range of higher level protocols, many perhaps that were never thought of
when the lower layer protocols were developed.

When multiple different protocols can occupy a hole in the layer below (or provide carrier services
for the layer above), this is frequently illustrated by the layering diagram shown in Figure 2.

2  Protocol specification - some basic concepts

Protocols can be (and historically have been) specified in many ways. One fundamental distinction
is between character-based specification versus binary-based specification.

Character-based specification The "protocol" is defined as a series of lines of ASCII
encoded text.

Binary-based specification The “protocol” is defined as a string of octets or of bits.

For binary-based specification, approaches vary from various picture-based methods to use of a
separately defined notation with associated application-independent encoding rules.

Ethernet

IP or Network
Layer

Internet
Protocol

HTTP

TCP or
Transport
Layer

Application
Layer

     “Real”
      Networks

Figure 2:  Layered protocols - TCP/IP
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The latter is called the "abstract syntax" approach.  This is the approach taken with ASN.1.  It
has the advantage that it enables designers to produce specifications without undue concern with
the encoding issues, and also permits application-independent tools to be provided to support the
easy implementation of protocols specified in this way.  Moreover, because application-specific
implementation code is independent of encoding code, it makes it easy to migrate to improved
encodings as they are developed.

2.1  Layering and protocol "holes"

The layering concept is perhaps most commonly associated with the International Standards
Organization (ISO) and International Telecommunications Union (ITU) "architecture" or "7-layer
model" for Open Systems Interconnection (OSI) shown in Figure 3.

While many of the protocols developed within this framework are not greatly used today, it
remains an interesting academic study for approaches to protocol specification.  In the original
OSI concept in the late 1970s, there would be just 6 layers providing (progressively richer) carrier
services, with a final "application layer" where each specification supported a single end-
application, with no "holes".

It became apparent, however, over the next decade, that even in the "application layer" people
wanted to leave "holes" in their specification for later extensions, or to provide a means of tailoring
their protocol to specific needs.  For example, one of the more recent and important protocols -
Secure Electronic Transactions (SET) - contains a wealth of fully-defined message semantics, but
also provides for a number of "holes" which can transfer "merchant details" which are not

Figure 3: OSI layers and ASN.1

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer
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ASN.1 Encoding Rules
determine the
bits on the line
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specified in the SET specification itself.  So we have basic messages for purchase requests and
responses, inquiry  requests and responses, authorization requests and responses, and so on, but
within those messages there are “holes” for “message extensions” - additional information specific
to a particular merchant.

It is thus important that any mechanism or notation
for specifying a protocol should be able to cater well
for the inclusion of "holes".  This has been one of the
more important developments in ASN.1 in the last
decade, and will be a subject of much further
discussion in this book.

"Catering well" for the inclusion of "holes" implies that the notation must have defined mechanisms
(preferably uniformly applied to all specifications written using that notation) to identify the
contents of a hole at communications time.   (In lower layers, this is sometimes referred to as the
"protocol id" problem).  Equally important, however, are notational means to clearly identify that a
specification is incomplete (contains a hole), together with well-defined mechanisms to relate the
(perhaps later in time) specification of the contents of holee to the location of the holes themselves.

2.2  Early developments of layering

The very earliest protocols operated over a single link (called, surprisingly, "LINK" protocols!),
and were specified in a single monolithic specification in which different physical signals (usually
voltage or current) were used to signal specific events related to the application.  (An example is
the “off-hook” signal in early telephony systems).  If you wanted to run a different application, you
re-defined and re-built your electronics!

HoleHole

 Part of a specification left undefined toPart of a specification left undefined to
carry material defined by otherscarry material defined by others..

Figure 4:  Application communication with ASN.1

ASN.1
specified

application

ASN.1
specified

application

ASN.1 encodings ASN.1 encodings

Any reliable transport mechanism for
messages (arbitrary length, 8-bit bytes)
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This illustrates the major advantage of "layering":  it enables reusability of carrier mechanisms to
support a range of different higher-layer protocols or applications, as illustrated in Figure 2.

Nobody today would dream of providing a single monolithic specification similar to the old
"LINK" protocols:  perhaps the single most important step in computer communication technology
was to agree that current, voltage, sound, light, signalling systems would do nothing more than
transfer a two-item alphabet - a zero or a one - and that applications would build on that.  Another
important step was to provide another "layer" of protocol to turn this continuous flow of bits into
delimited or "framed"  messages with error detection, enabling higher layer protocols to talk about
"sending a message" (which may get lost, may get through, but the unit of discussion is the
message).

But this is far too low a level of discussion for a book on ASN.1! Between these electrical levels
and the normal carriers that ASN.1 operates with we have layers of protocol concerned with
addressing and routing through the Internet or a telecoms network, and concerned with recovery
from lost messages.

At the ASN.1 level, we assume that an application on one machine can "talk" to an application on
another machine by reliably sending octet strings between themselves.   (Note that all ASN.1-
defined messages are an integral multiple of 8-bits - an octet string, not a general bit-string).  This
is illustrated in Figure 4.

Nonetheless, many ASN.1-defined applications are still specified by first specifying a basic
"carrier" service, with additional specifications (perhaps provided differently by different groups)
to fill in the holes.  This is illustrated in Figure 5.  As we will see later, there are many
mechanisms in ASN.1 to support the use of "holes" or of "layering".

Figure 5:  Generic and specific protocols with ASN.1
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People have sometimes described the OSI 7-layer model as "layering gone mad".  Layering can be
an important tool in promoting reusability of specifications (and code), and in enabling parts of the
total specification (a low or a high layer), to be later improved, extended (or just mended!) without
affecting the other parts of the total specification. This desirable feature will, of course, only be
achieved if the means for linking the different parts of the specification together to form the
complete whole are sufficiently rich.

2.3  The disadvantages of layering - keep it simple!

Layering clearly carries important advantages in reusability, but it also carries the major
disadvantage that in order to implement completely some given application, many different
documents may have to be consulted, and the "glue" for linking these together may not always be
precise enough to ensure that implementations by different vendors interwork.

It is important, therefore, in designing protocols, that the desire for generality and long-life be
tempered by an equal desire to keep the total specification simple.  This is again a theme that we
will return to later - ASN.1 makes it possible to write very simple and clear specifications very
easily and quickly.  But it also contains powerful features to support layering and "extensibility"
(see below).  The decision to use or to not use such features must be one for the designer.  There
are circumstances where their use is essential for a good long-lasting specification.  There are
other cases where the added complexity (and sometimes implementation size) does not justify the
use of advanced features.

2.4  Extensibility

A remark was made earlier that layering enables "later
improvement" of one of the layers without affecting the
specification of layers above and below.  This concept of
"later improvement" is a key phrase, and has an
importance beyond any discussion of layering.  One of
the important aspects of protocol specification that
became recognised in the 1980s is that a protocol
specification is rarely (probably never!) completed on
date xyz, implemented,  deployed, and left unchanged.

There is always a "version 2".  And implementations of version 2 need to have a ready means of
interworking with the already-deployed implementations of "version 1", preferably without having
to include in version 2 systems a complete implementation of both version 1 and version 2
(sometimes called "dual-stacks").  Mechanisms enabling version 1 and version 2 exchanges are
sometimes called a "migration" or "interworking strategy" between the new and the earlier
versions.  In the transition from IPv4 to IPv6 (the “IP” part of “TCP/IP”), it has perhaps taken as
much work to solve migration problems as it took to design IPv6 itself!  (An exaggeration of
course, but the point is an important one - interworking with deployed version 1 systems matters.)

It turns out that provided you make plans for version 2 when you write your version 1
specification, you can make the task of "migration" or of defining an "interworking strategy" much
easier.

We can define extensibility provision as

Extensibility provisionExtensibility provision

        Part of a version 1        Part of a version 1
specification designed to make itspecification designed to make it
easy for future version 2 (extended)easy for future version 2 (extended)
systems to interwork with deployedsystems to interwork with deployed
version 1 systemsversion 1 systems
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• elements of a version 1 specification that allow the encapsulation of unknown material
at certain points in the version 1 messages, and

• specification of the actions to be taken by the version 1 system if such material is
present in a message.

Provision for extensibility in ASN.1 is an important aspect which will be discussed further later in
this book, and is illustrated in Figure 6.

Extensibility was present in early work in ITU-T and ISO by use of a very formalised means of
transferring parameters in messages, a concept called "TLV" - Type, Length, Value, in which all
pieces of information in a message are encoded with a type field identifying the nature of that piece

Figure 6: Version 1 and Version 2 interworking
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Figure 7: The “TLV” approach for parameters and groups
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of information, a length field delimiting the value, and then the value itself, an encoding that
determines the information being sent.  This is illustrated in Figure 7 for parameters and for
groups of parameters.  The approach is generalised in the ASN.1 Basic Encoding Rules (BER) to
cover groups of groups,  and so on, to any depth.

Note that the encoding used for the value only needs to unambiguously identify application
information within the context of the parameter identified by the type field.  This concept of
distinct octet-strings that identify information within the context of some explicit "class" or "type"
identifier is an important one that will be returned to later.

By requiring in the version 1 specification that parameters that are "unrecognized" - added in
version 2 - should be silently ignored, the designers of version 2 have a predictable basis for
interworking with deployed version 1 systems.  Of course, any other well-specified behaviour
could be used, but "silently ignore" was a common specification.  ASN.1 provides a notation for
defining the form of messages, together with “encoding rules” that specify the actual bits on the
line for any message that can be defined using the notation.  The "TLV" described above was
incorporated into the earliest ASN.1 encoding rules (the Basic Encoding Rules or BER) and
provides very good support for extensibility due to the presence in every element of the "T" and the
"L", enabling "foreign" (version 2 ) material to be easily identified and skipped (or relayed).  It
does, however, suffer from encoding identification and length fields which are often unnecessary
apart from their use in promoting extensibility.  For a long time, it was thought that this verbosity
was an essential feature of extensibility, and it was a major achievement in encoding rule design
when the ASN.1 Packed Encoding Rules (PER) provided good support for extensibility with little
additional overhead on the line.

2.5  Abstract and transfer syntax

The terms abstract and transfer syntax were primarily developed within the OSI work, and are
variously used in other related computer disciplines.  The use of these terms in ASN.1 (and in this
book) is almost identical to their use in OSI, but does not of course make ASN.1 in any way
dependent on OSI.

The following steps are necessary when specifying the messages forming a protocol (see Figure 8):

• The determination of the information that needs to be transferred in each message;  this is a
"business-level" decision.  We here refer to this as the semantics associated with the
message.

• The design of some form of data-structure (at about the level of generality of a high-level
programming language, and using a defined notation) which is capable of carrying the
required semantics.  The set of values of this data-structure are called the abstract syntax
of the messages or application.  We call the notation we use to define this data structure or
set of values we the abstract syntax notation for our messages.  ASN.1 is just one of
many possible abstract syntax notations, but is probably the one most commonly used.

• The crafting of a set of rules for encoding messages such that, given any message defined
using the abstract syntax notation, the actual bits on the line to carry the semantics of that
message are determined by an algorithm specified once and once only (independent of the
application). We call such rules encoding rules, and we say that the result of applying
them to the set of (abstract syntax) messages for a given application defines a transfer
syntax for that application.  A transfer syntax is the set of bit-patterns to be used to
represent the abstract values in the abstract syntax, with each bit-pattern representing just
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one abstract value.  (In ASN.1, the bit-patterns in a transfer syntax are always a multiple
of 8 bits, for easy carriage in a wide range of carrier protocols).

We saw that early LINK protocols did not clearly separate electrical signalling from application
semantics, and similarly today, some protocol specifications do not clearly separate the
specification of an abstract syntax from the specification of the bits on the line (the transfer
syntax).   It is still common to directly specify the bit-patterns to be used (the transfer syntax), and
the semantics associated with each bit-pattern.  However, as will become clear later, failure to

Figure 8:  From abstract specification to bits-on-the-line
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clearly separate abstract from transfer syntax has important implications for reusability and for
the use of common tools.  With ASN.1 the separation is complete.

2.6  Command line or statement-based approaches

Another important approach to protocol design (not the approach taken in ASN.1) is to focus not
on a general-purpose data-structure to hold the information to be transferred, but rather to design a
series of lines of text each of which can be thought of as a command or a statement, with textual
parameters (frequently comma separated) within each command or statement.  This approach pre-
dated the use of ASN.1, but is still frequently employed today, more commonly in Internet-defined
protocols (for example, the Internet Hyper-Text Transfer Protocol - HTTP - that supports the
World-Wide Web) than in ITU-T/ISO-defined protocols.  A further discussion of this approach is
given in 5.4 below.

2.7  Use of an Interface Definition Language

The use of an Interface Definition Language (IDL) is very similar to the abstract syntax approach
of ASN.1.  Here, however, the model is of objects interacting over a network through defined
interfaces which enable the functions or methods of an object to be invoked, and its results to be
returned.   The model is supported by an Interface Definition Language that enables the data-
structures which are passed across  each interface to be specified at a high-level of abstraction.

Probably the most important IDL today is the Common Object Request Broker Architecture
(CORBA) IDL.  In CORBA, the IDL is supported by a wealth of specifications and tools
including encoding rules for the IDL, and means of transfer of messages to access interfaces across
networks.

A detailed comparison of ASN.1 and CORBA goes beyond this text, and remarks made here
should be taken as this author’s perception in mid 1999.  In essence, CORBA is a complete
architecture and message passing specification in which the IDL and corresponding encodings
form only a relatively small (but important) part.  The CORBA IDL is simpler and less powerful
than the ASN.1 notation, and as a result encodings are generally much more verbose than the
Packed Encoding Rule (PER) encodings of ASN.1.  ASN.1 is generally used in protocol
specifications where very general and flexible exchange of messages is needed between
communicating partners, whereas CORBA encourages a much more stylised “invocation and
response” approach, and generally needs a much more substantial suporting infrastructure.

3  More on abstract and transfer syntaxes

3.1  Abstract values and types

Most programming languages involve the concept of types or classes (and notation to define a
more complex type by reference to built-in types and "construction mechanisms"), with the concept
of a value of a type or class (and notation to specify values).  ASN.1 is no different.

So, for example, in C we can define a new type “My-type” as:
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typedef struct My-type {
short first-item;
boolean      second-item} My-type;

The equivalent definition in ASN.1 appears below.

In ASN.1 we also have the concept of values of basic types or of more complex structures.  These
are  often called abstract values (see Figure 8 again), to emphasise that we are considering them
without any concern for how they might be represented in a computer or on a communications line.
For convenience, these abstract values are grouped together into types.  So for example, we have
the ASN.1 type notation

                INTEGER

that references the integer type, with abstract values from (more or less) minus infinity to plus
infinity.  We also have the ASN.1 type notation

                BOOLEAN

that references the boolean type with just two abstract values "TRUE" and "FALSE".

We can define a type of our own:

        My-type ::= SEQUENCE
                  {first-item   INTEGER,
                   second-item  BOOLEAN}

each of whose abstract values is a pair of values, one "integer" and one "boolean".  The important
point, however, is that for many purposes, we don't care about (or discuss) any internal structure
of the values in "My-type".   Just like "integer" and "boolean", it is simply a convenient means of
referencing a set of abstract values.

3.2  Encoding abstract values

So (to summarise the above discussion)  for any type that can be defined using ASN.1, we say that
it contains (represents) a set of abstract values. (See Figure 8 again).

But now for the important part:

When any (correct!) set of encoding rules are applied to the abstract values in any
given ASN.1 type, they will produce bit-patterns (actually octet-strings) for each value
such that any given octet string corresponds to precisely one abstract value.

Note that the reverse is not necessarily true - there may be more than one octet string for a given
abstract value.  This is another way of saying that there may be options in the encoding rules.
(ASN.1 requires all conforming decoders to handle any encodings that a conforming encoder is
allowed to use).
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If we restrict encoder options so that for any given abstract value in the type there is precisely one
encoding, we say that the encoding rules are canonical.  Further discussion of canonical encoding
rules appears in Section III.

Now let us consider a designer wanting to specify the
messages of a protocol using ASN.1.  It would be possible
to define a set of ASN.1 types (one for each different sort
of message), and to say that the set of abstract values to be
transmitted in protocol exchanges (and hence needing
encoding) are the set of all the abstract values of all those
ASN.1 types.  The observant reader (some people won't like me saying that!) will have spotted that
the above requirement on a correct set of encoding rules is not sufficient for unambiguous
communication of the abstract values, because two abstract values in separate but similar ASN.1
types could have the same octet-string representation.  (Both types might be a sequence of two
integers, but they could carry very different semantics).

It is therefore an important requirement in designing
protocols using ASN.1 to specify the total set of abstract
values that will be used in an application as the set of
abstract values of a single ASN.1 type.  This set of
abstract values is often referred to simply as the
abstract syntax of the application, and the
corresponding set of octet-strings after applying some
set of encoding rules is referred to as a possible transfer syntax for that application.  Thus the
application of the ASN.1 Basic Encoding Rules (as in Figure 8) to an ASN.1 type definition
produces a transfer syntax (for the abstract syntax) which is a set of bit patterns that can be used
to unambiguously represent these abstract values during transfer.

Note that in some other areas, where the emphasis is on storage of data rather than its transfer
over a network, the concept of abstract syntax is still used to represent the set of abstract values,
but the term concrete syntax is sometimes employed for a particular bit-pattern representation of
the material on a disk.  Thus some authors will talk about "concrete transfer syntax" rather than
just “transfer syntax”,  but this term is not used in this book.

We will see later how, if we have distinct ASN.1 types for different sorts of messages, we can
easily combine them into a single ASN.1 type to use to define our abstract syntax (and hence our
transfer syntax).  There is specific notation in the post-1994 version of ASN.1 to clearly identify
this "top-level" type.  All other ASN.1 type definitions in the specification are there solely to give
support to this top-level type, and if they are not referenced by it (directly or indirectly), their
definition is superfluous and a distracting irrelevance!  Most people don't retain superfluous type
definitions in published specifications, but sometimes for historical reasons (or through sloppy
editing or both!) you may encounter such material.

In summary then:  ASN.1 encoding rules provide unambiguous octet-strings to represent the
abstract values in any ASN.1 type;  the set of abstract values in the top-level type for an
application is called the abstract syntax for that application;   the corresponding octet-strings
representing those abstract values unambiguously (by the use of any given set of encoding rules) is
called a transfer syntax for that application.

Note that where there are several different encoding rule specifications available (as there are for
ASN.1) there can in general be several different transfer syntaxes (with different verbosity and
extensibility - etc - properties) available for a particular application, as shown in Figure 8.

Abstract syntaxAbstract syntax

         The set of abstract values ofThe set of abstract values of
the        top-level type for thethe        top-level type for the
applicationapplication

Transfer syntaxTransfer syntax

  A set of unambiguous octet stringsA set of unambiguous octet strings
used to represent a value from anused to represent a value from an
abstract syntax during transferabstract syntax during transfer
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In the OSI world, it was considered appropriate to allow run-time negotiation of which transfer
syntax to use.  Today, we would more usually expect the application designer to make a selection
based on the general nature and requirements of the application.

4  Evaluative discussion

4.1  There are many ways of skinning a cat - does it matter?

Whilst the clear separation of abstract syntax specification (with associated semantics) from
specification of a transfer syntax is clearly "clean" in a puristic sort of way, does it matter?  Is
there value in having multiple transfer syntaxes for a given application?  The ASN.1 approach to
protocol design provides a common notation for defining the abstract syntax of any number of
different applications, with common specification text and common implementation code for
deriving the transfer syntax from this.  Does this really provide advantages over the character line
approach discussed earlier?  Both approaches have certainly been employed with success.
Different experts hold different views on this subject, and as with so much of protocol design, the
approach you prefer is more likely to depend on the culture you are working within than on any
rational arguments.  Indeed, there are undoubted advantages and disadvantages to both
approaches, so that a decision becomes more one
of which criteria you consider the most important,
rather than on any absolute judgement. So here
(as in a number of parts of this book) Figure 999:
Readers take warning (modified - "Smoking"
replaced by "This discussion" - from text that
appears on all UK cigarette packets!) applies.  (I
will refer back to Figure 999 whenever a remark
appears in this book that may be somewhat
contentious).

4.2  Early work with multiple transfer syntaxes

Even before the concepts of abstract and transfer syntax were spelled out and the terms defined,
protocol specifiers recognised the concepts and supplied multiple transfer syntaxes in their
specifications.

Thus in the Computer Graphics Metafile (CGM) standard, the body of the standard defines the
functionality represented by a CGM file (the abstract syntax), with three additional sections
defining a "binary encoding", a "character encoding", and a "clear-text encoding".  The "binary
encoding" was the least verbose, was hard for a human to read (or debug), was not easy to produce
with a simple program, and required a storage or transfer medium that was 8-bit transparent.  The
"character encoding" used two-character mnemonics for "commands" and parameters, and was in
principle capable of being produced by a text editor.  It was more human readable, but importantly
mapped to octets via printing ASCII characters and hence was more robust in the storage and
transfer media it could use (but was more verbose).   The “clear-text” encoding was also ASCII-
based, but was designed to be very human-readable, and very suitable for production by a human-
being using a suitable text editor, or for viewing by a human-being for debugging purposes.  It
could be employed before any graphical interface tools for CGM became available, but was
irrelevant thereafter.

Government Health WarningGovernment Health Warning
  This discussion can damage  This discussion can damage

 your health! your health!

Figure 999: Readers take warning
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These alternative encodings are appropriate in different circumstances, with the compactness of the
"binary encoding" giving it the market edge as the technology matured and tools were developed.

4.3  Benefits

Some of the benefits which arise when a notation for abstract syntax definition is employed are
identified below, with counter arguments where appropriate.

Efficient use of local representations

Suppose you have an application using large quantities of material which is stored on machine-
type-A in a machine-specific format - say with the most significant octet of each 16-bit integer at
the lower address byte. On machine-type-B, however, because of differing hardware, the same
abstract values are represented and stored with the most significant octet of each 16-bit integer at
the higher address byte.  (There are usually further differences in the machine-A/machine-B
representations, but this so-called "big-endian/little-endian" representation of integers is often the
most severe problem.)

When transferring between machine-type-A and machine-type-B, it is clearly necessary for one or
both parties (and if we are to be even-handed it should be both!) to spend CPU cycles converting
into and out of some agreed machine-independent transfer syntax.   But if we are transferring
between two separate machines both of machine-type-A, it clearly makes more sense to use a
transfer syntax closely related to the storage format on those machines.

This issue is generally more important for applications involving the transfer of large quantities of
highly structured information, rather than for small headers negotiating parameters for later bulk
transfer.  An example where it would be relevant is the Office Document Architecture (ODA)
specification.  This is an ISO Standard and ITU-T Recommendation for a large structure capable
of representing a complete service manual for (for example) a Boeing aircraft, so the application
data can be extremely large.

Improved representations over time

It is often the case that the early encodings produced for a protocol are inefficient, partly because
of the desire to be "protective", or to have encodings that are easy to debug, in the early stages of
deployment of the application, partly from simple time pressures.  It can also be because
insufficient effort is put into the "boring" task of determining a "good" set of "bits-on-the-line" for
this application.

Once again, if the bulk of the protocol is small compared with some "bulk-data" that it is
transferring, as is the case - for most messages - with the Internet’s Hyper-Text Transfer Protocol
(HTTP) or File Transfer Protocol (FTP), then efficiency of the main protocol itself becomes
relatively unimportant.

Reuse of encoding schemes

If we have a clear separation of the concept of abstract syntax definition from transfer syntax
definition, and have available a notation for abstract syntax definition (such as ASN.1) which is
independent of any application, then specification and implementation benefits immediately accrue.
The task of generating "good" encoding rules for that notation can be done once, and these rules
can be referenced by any application that uses that notation to define its abstract syntax.  This is
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not only a major saving of effort if a new application is to be specified, but it also provides a
specification of a transfer syntax that has already been argued over, agreed, and gotten debugged!

This approach also ensures a common "look-and-feel" to the resulting transfer syntaxes over a
number of different applications, with well-understood characteristics and familiarity for
implementors.  It also makes possible the emergence of tools, discussed below.

The advantage extends to the implementation.  Where there is a clear notation and well-defined
encoding rules that are application-independent, it becomes possible to provide a set of generic
encode/decode routines that can be used by any application.  This significantly reduces
implementation effort and residual bugs.  Figure 9 illustrates this situation, where the greyed-out
text describes effort which is not required due to the re-use of existing material.

Structuring of code

If the specification of the encodings is kept clearly separate from the abstract syntax specification,
and if the latter can be easily (by a tool or otherwise) mapped into data-structures in the
implementation language, this encourages (but of course does not require) a modular approach to

Figure 9:  Re-use of encoding schemes and code
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implementation design in which the code responsible for performing the encodings of the data is
kept clearly separate from the code responsible for the semantics of the application.

Reuse of code and common tools

This is perhaps the major advantage that can be obtained from the separation of abstract and
transfer syntax specification, which is characteristic of ASN.1.

By the use of so-called ASN.1 "compilers" (dealt with more fully in a Chapter 7 of this section and
which are application-independent), any abstract syntax definition in ASN.1 can be mapped into
the (abstract) data-structure model of any given programming language, through the textual
representation of data-types in that language.  Implementors can then provide code to support the
application using that (abstract) data-structure model with which they are familiar, and can call an
application-independent piece of code to produce encodings of values of that data-structure for
transmission (and similarly to decode on reception).

It is very important at this point for the reader to understand why "(abstract)" was included in the
above text.  All programming languages (from C to Java) present to their users a "memory-model"
by which users define, access, and manipulate structures.  Such models are platform independent,
and generally provide some level of portability of any associated code.  However, in mapping
through compilers and run-time libraries into real computer memory (concrete representation of the
abstract data-structures), specific features of different platforms intrude, and the precise
representation in memory differs from machine-type to machine-type (see the "big-endian/little-
endian" discussion in Chapter 4 of Section III).

A tool-vendor can provide (possibly platform-specific, but certainly application-independent) run-
time routines to encode/decode values of the abstract data-structures used by the implementor, and
the implementor can continue to be blissfully unaware of the detailed nature of the underlying
hardware, but can still efficiently produce machine-independent transfer syntaxes from values
stored in variables of the implementation language.

As with any discussion of code structure, reusability, and tools, real benefits only arise when there
are multiple applications to be implemented.  It is sometimes worth-while building a general-
purpose tool to support a single implementation, but more often than not it would not be.  Tools
are of benefit if they can be used for multiple implementations, either by the same implementors or
by a range of implementors.

Tools for ASN.1 have only really emerged and matured because ASN.1 has become the
specification language of choice for a wide range of applications.

Testing and line monitor tools

The use of a common notation to define the syntax of messages makes it possible to automate
many aspects of total protocol support that go beyond the simple implementation of a protocol.
For example, it becomes possible to automatically generate test sequences, and to provide generic
line-monitors or “sniffers”.

Multiple documents requires "glue"

Separation of abstract and transfer syntax specification, whilst distinct from layering, has some
common aspects.  It promotes reusability of specifications and code, but it means that more than
one document has to be obtained and read before it is possible to implement the application.  It
also means that unless the "glue" between the two parts of the total specification is well-defined,
there is scope for errors.
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In the case of ASN.1, the "glue" is the ASN.1 notation itself, and there have been almost no
instances of the "glue" coming "unstuck" for normal use.  However, when we come to the question
of canonical encoding rules - where there has to be a distinct bit-pattern, but only one, for each
abstract value, the "glue" has to include a very clear definition of exactly what are the abstract
values in any given ASN.1 type.  This caused some problems, and much debate, with the ASN.1
specifications in the first decade of their use, for some theoretical constructions!   (But for all real-
world applications, it never proved a problem).

Another disadvantage arises if specification documents, particularly of the "glue" - the ASN.1
notation, are not freely (without cost) available to anyone that wants them.   This has been
theoretically a problem with ASN.1 over the last decade-and-a-half, but I suspect that almost
everybody that couldn't afford to pay ITU-T/ISO prices for the ASN.1 documents has managed to
get them one way or another!

The "tools" business

Expressing an abstract syntax in a high-level application-independent notation such as ASN.1
enables, but does not itself require, the use of tools, and it was some five years after the first
specifications using ASN.1 were produced that "ASN.1 tools" began to emerge onto the market
place.

Today a new business area of "ASN.1 tools" for the notation and its encoding rules has been
generated, with a commercial advantage for those who can justify the cost of acquiring a tool to
help their implementation task.

5  Protocol specification and
implementation - a series of case
studies

This section completes this chapter with discussion of a
number of approaches to protocol specification and
implementation, ending with a simple presentation of the
approach that is adopted when ASN.1 is used.

5.1  Octet sequences and fields within
octets

Protocols for which all or much of the information can be
expressed as fixed-length fields all of which are required
to be present have traditionally been specified by drawing
diagrams such as that shown in Figure 10:  Traditional
approach.

Figure 10 is part of the Internet Protocol Header (the
Internet Protocol is the IP protocol of the TCP/IP stack
illustrated in Figure 2.  A similar picture is used in X.25
level 2 to define the header fields.
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This approach was very popular in the early days, when implementations were performed using
assembler language or languages such as BCPL or later C, allowing the implementor close contact
with the raw byte array of a computer memory.

It was relatively easy for the implementor to read in octets from the communications line to a given
place in memory, and then to hard-wire into the implementation code access to the different fields
(as shown in the diagram) as necessary.  Similarly for transmission.  In this approach the terms
"encoding" and "decoding" were not usually used.

The approach worked well in the middle seventies, with the only spectacular failures arising (in
one case) from a lack of clarity in the specification of which end of the octets (given in the
diagram) was the most significant when interpreting the octet as a numerical value, and which end
of the octets (given in the diagram) was to be transmitted first on a serial line.  The need for a very
clear specification of these bit-orders in binary-based protocol specification is well-understood
today, and in particular is handled within the ASN.1 specification, and can be ignored by a
designer or implementor of an ASN.1-based specification.

5.2  The TLV approach

Even the simplest protocols found the need for variable length "parameters" of messages, and for
parameters that could be optionally omitted.  This has been briefly described earlier (see Figure 7)
in section 2.4.

In this case, the specification would normally identify some fixed-length mandatory header fields,
followed by a "parameter field" (often terminated by a length count).   The "parameter field" would
be a series of one or more parameters, each encoded with an identification field, a length field, and
then the parameter value.  The length field was always present, even for a fixed-length parameter,
and the identification field even for a mandatory parameter.  This ensured that the basic "TLV"
structure was maintained, and enabled "extensibility" text to be written for version 1 systems to
skip parameters they did not recognise.

An implementor would now write some fairly general-purpose code to scan the input stream and to
place the parameters into a linked list of buffers in memory, with the application-specific code then
processing the linked buffers.  Note, however, that whilst this approach was quite common in
several specifications, the precise details of length encoding (restricted to a count of 255 or
unrestricted, for example), varied from specification to specification, so any code to handle these
parameters tended to be application-specific and not easily re-usable for other applications.

As protocols became more complicated, designers found the need to have complete groups of
parameters that were either present or omitted, with all the parameters in a given group collected
together in the parameter field.  This was the approach taken in the Teletex (and later the OSI
Session Layer) specifications, and gave rise to a second level of TLV, with an outer identifier for a
parameter group, a length field pointing to the end of that group, and then the TLV for each
parameter in the group (revisit Figure 7).

This approach was also very appropriate for information which required a variable number of
repetitions of a given parameter value.

At the implementation level, the code to "parse" an input octet string is now a little more complex,
and the resulting data-structure to be passed to the application-specific code becomes a two level
tree-structure rather than a simple linked list, level 1 nodes being parameter groups, and level 2
nodes parameters.
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This approach has been presented above in a very "pure" form, but in fact it was rarely so pure!
The Teletex and Session Protocols actually mixed together at the top level parameter group TLVs
and parameter TLVs!

Those who already have some familiarity with the ASN.1 Basic Encoding Rules - BER -
(described in much more detail later), will recognise that this TLV approach was generalised to
form the basic (application-independent) encoding used by BER.  For BER, the entire message is
wrapped up with an identifier (that distinguishes it from any other message type in the same
abstract syntax) and a length field pointing to the end of the message.  The body is then, in general,
a sequence of further TLV triplets, with the “V” part of each triplet being either further TLV
triplets (etc to any depth), or being a "primitive" field such as an integer or a character string.
This gives complete support for the power of normal programming language data-structure
definitions to define groupings of types and repetitions of types to any depth, as well as providing
support at all levels for optional elements and for extensibility.

5.3  The EDIFACT graphical syntax

This approach comes closest to ASN.1, with a clear (graphical) notation for abstract syntax
specification, and a separate encoding rule specification.  An example of the Electronic Data
Interchance For Administration, Commerce and Transport (EDIFACT) graphical syntax is given in
Figure 11: EDIFACT graphical syntax.  As with ASN.1, the definition of the total message can be
done in conveniently sized chunks using reference names for the chunks, then those chunks are
combined to define the complete message.  So in Figure 11 we have the message fragment (defined
earlier or later) "UNH" which is mandatorily present once, similarly "AAA", then "BBB" which is
conditional and is present zero to ten times, then "CCC" similarly, then up to 200 repetitions of a
composite structure consisting of one "DDD" followed by up to ten "EEE", etc.

Figure 11: EDIFACT graphical syntax
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The actual encoding rules were, as with ASN.1, specified separately, but were based on character
encoding of all fields.  The graphical notation is less powerful than the ASN.1 notation, and the
range of primitive types much smaller.  The encoding rules also rely on the application designer to
ensure that a type following a repeated sequence is distinct from the type in that repeated sequence,
otherwise ambiguity occurs.  This is a problem avoided in ASN.1, where any legal piece of ASN.1
produces unambiguous encodings.

At the implementation level, it would be possible to map the EDIFACT definition into a data-
structure for the implementation language, but I am not aware of any tools that currently do this.

5.4  Use of BNF to specify a character-based syntax

This approach has been briefly described earlier, and is common in many Internet protocols.

Where this character-based approach is employed, the precise set of lines of text permitted for
each message has to be clearly specified.  This specification is akin to the definition of an abstract
syntax, but with more focus on the representation of the information on the line than would be
present in an ASN.1 definition of an abstract syntax.

The notation used to define this syntax is usually some variation of a notation frequently used to
define the syntax of programming languages (and indeed used to define the syntax of ASN.1
itself), something called Bacchus-Naur Form (BNF), named after its original inventors.

For example, in ASN.1, the BNF statements:

EnumeratedType ::= ENUMERATED { Enumeration }
Enumeration ::= NamedNumber |

    Enumeration , NamedNumber
NamedNumber ::= identifier(SignedNumber)
SignedNumber ::= number | - number

are used to specify that one of the constructs of the language consists of the word
“ENUMERATED”, followed, in curly brackets, by a comma-separated list with each item being an
identifier followed by a number (possibly preceded by a minus sign) in round brackets.

Unfortunately, there are many variations of BNF in use today, and most applications employing it
find it necessary to define their own particular BNF notation.  This makes it more difficult than it
should be to use common tools to support BNF-based specifications.

BNF is a relatively low-level notational support tool.  It is very powerful for defining arbitrary
syntactic structures,  but it does not in itself determine how variable length items are to be
delimited or iteration counts determined.  Even where the same BNF notation is employed, the
"look-and-feel" of two protocols defined in this way can still be very different, as the means of
terminating strings (quotation marks, reserved characters, reserved characters with escapes) or of
variable length repetitions of items, have to be written into the specific application using the BNF
notation for this definition.

Of course, as with any tool, if the design is a good one, a good result can come out.  Many of the
Internet protocol designs take this approach, and the best designers ensure that the way in which
length and iteration terminations are achieved follows as closely as possible the approach taken in
other related specifications, and is consistent for different fields and commands within that
application.
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Software tools to support BNF-based specifications are usually restricted to lexical analysis of an
incoming string, and generally result in the application-specific code and encoding matters being
more closely intertwined than would normally be the case if an ASN.1 tool was used.

Identification fields for lines in the messages tend to be relatively long names, and "enumerations"
also tend to use long lists of names, so the resulting protocol can be quite verbose.  In these
approaches, length fields are normally replaced by reserved-character delimiters, or by end-of-line,
often with some form of escape or extension mechanism to allow continuation over several lines
(again these mechanisms are not always the same for different fields or for different applications).

In recent years there has been an attempt to use exactly the same BNF notation to define the syntax
for several Internet protocols, but variations still ensue.

At implementation-time, a sending implementation will typically hard-wire the encoding as a series
of "PRINT" statements to print the character information directly onto the line or into a buffer.  On
reception, a general-purpose tool would normally be employed that could be presented with the
BNF specification and that would parse the input string into the main lexical items.  Such tools are
available without charge for Unix systems, making it easy for implementations of protocols defined
in this way to be set as tasks for Computer Science students (particularly as the protocol
specifications tend also to be available without charge!).

In summary then, this approach can work well if the information to be transferred fits naturally
into a two-level structure (lines of text, with an identifier and a list of comma-separated text
parameters on each line), but can become complex when a greater depth of nesting of variable
numbers of iterated items becomes necessary, and when escape characters are needed to permit
commas as part of a parameter.  The approach also tends to produce a much more verbose
encoding than the binary approach of ASN.1 BER, and a very much more verbose encoding than
the ASN.1 Packed Encoding Rules (PER).

5.5  Specification and implementation using ASN.1 - early 1980s

ASN.1 was first developed to support the definition of the set of X.400 Message Handling Systems
CCITT (the International Telegraph and Telephone Consultative Committee, later to be renamed
ITU-T) Recommendations, although the basic ideas were taken from the Xerox Courier
Specification.

X.400 was developed by people with a strong application interest in getting the semantics of the
information flows for electronic messaging right, but with relatively little interest in worrying
about the bit-level encoding of messages.  It was clear that they needed more or less the power of
data-structure definition in a high-level programming language to support their specification work,
and ASN.1 was designed to provide this.

Of course, notation closer to an actual programming language could have been used, but this
would not have made the application easy to implement for those who might be forced (for
platform reasons) to use a different language.  Moreover, whilst using an existing language might
solve the notational problem,  there would still be work needed to define encodings, as in-memory
representations of data structures from even the same language on the same platform differed (and
still differ today) from compiler-writer to compiler-writer.

So ASN.1 was produced, and was heavily used by X.400 and by many other ITU-T and ISO
specifications, where its power and the freedom it gave to designers to concentrate on what
mattered - the application semantics - was much appreciated.  Later, ASN.1 became used in many
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telecommunications applications, and applications in specific business sectors (and most recently
for SET - Secure Electronic Transactions).

In the early 1980s, the only ASN.1 tools around were simple syntax checkers to help the designers
get the specification right.  The encoding rules were the TLV-based BER described earlier, and
implementation architectures tended to be similar to those used for the character command-line
approach described earlier.   That is to say, some routines were produced to generate the "T" and
the "L" part of an encoding (and the "V" part for the primitive types such as integer and boolean),
and the structure of the message was hard-wired into the implementation by repeated calls to these
subroutines to generate T and L parts for transmission down the line.  On reception, quite simple
(and application-independent) parsing code could be written to take the input stream of nested TLV
encodings and to produce a tree-structure in memory with the leaves of the tree containing
encodings of primitive items like integers, booleans, character strings, etc.   The application code
would then "tree-walk" this structure to obtain the input values.

Thus in these early days, the ASN.1 notation:

• Provided a powerful, clear and easy to use way of specifying information content of
messages.

• Freed application designers from concerns over encoding.

• Provided application-independent encoding making development of reusable code and
sophisticated tools possible, although not instantly realised.

• Gave implementors a set of encoding rules to implement that were not as verbose as the
BNF-based approach, and no harder (but no easier either) to implement.

5.6  Specification and implementation using ASN.1 - 1990’s

It is of course still possible to produce an implementation of an ASN.1-based protocol without
tools.  What was done in the 1980s can still be done today.  However, there is today great pressure
to reduce the "time-to-market" for implementations, and to ensure that residual bugs are at a
minimum.  Use of tools can be very important in this respect.

There are today two main families of ASN.1 encoding rules, the original (unchanged) BER, and
the more recent (standardised 1994) PER (Packed Encoding Rules).  The PER encoding rules
specification is more complex than that of BER, but produces very much more compact encodings.
(For example, the encoding of a boolean value in PER uses only a single bit, but the TLV structure
of BER produces at least 24 bits!)
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There seems to be a "conventional wisdom" emerging that whilst encoding/decoding without a tool
for BER is an acceptable thing to do if you have the time to spare, it is likely to result in
implementation bugs if PER is being employed.  The reader should again refer to Figure 999:
Readers take warning!. This author would contend that there are implementation strategies that
make PER encoding/decoding without tools a very viable proposition.  Certainly much more care
at the design stage is needed to correctly identify the field-widths to be used to encode various
elements, and when padding bits are to be added (this comment will be better understood after
reading the chapter on PER), but once that is done, hard-wiring a PER encode/decode into
application code is still (this author would contend) possible.

Nonetheless, today, good tools, called "ASN.1 compilers", do exist, and for any commercial
development they are good value for money and widely used.  How would you implement an

Figure 12:  Use of an ASN.1 tool for implementation
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ASN.1 specification using a tool?  This is covered more fully (with examples based on the "OSS
ASN.1 Tools" package) in the last chapter of this section.  However, the basic outline is as follows
(see Figure 12).

The ASN.1 produced by the application designer is fed into the "compile phase" of the tool.  This
maps the ASN.1 into a language data-structure definition in any one of a wide range of supported
languages (and platforms), including C, C++, and Java.  The application code is then written to
read and write values from these data-structures, concentrating solely on the required semantics of
the application.

When an encode is needed, a run-time routine is called which uses information provided by the
compile phase about certain aspects of the ASN.1 definition, and which "understands" the way in
which information is represented in memory on this platform.  The run-time routine encodes the
entire message, and returns the resulting octet string.  A similar process is used for decoding.  Any
issues of big-endian or little-endian byte order (see 2.3 of Section III Chapter 4), or most-
significant bits of a byte, are completely hidden within the encode/decode routines, as are all other
details of the encoding rule specifications.

Of course, without using a tool, a similar approach of mapping ASN.1 to a language data-
structure and having separate code to encode and decode that data-structure is possible, but is
likely to be more work (and more error prone) than the more "hard-wired" approach outlined
above.  But with a tool to provide the mapping and the encode/decode routines, this is an extremely
simple and fast means of producing an implementation of an ASN.1-based application.

In conclusion then, using a tool, ASN.1 today:

• Provides a powerful, clear and easy to use
way for protocol designers to specify the
information content of messages.

• Frees application designers from concerns
over encoding, identification of optional
elements, termination of lists, etc.

• Is supported by tools mapping the ASN.1
structures to those of the main computer
languages in use today.

• Enables implementors to concentrate solely on
the application semantics without any concern
with encoding/decoding, using application-
independent run-time encode/decode routines
producing bug-free encodings for all the
ASN.1 encoding rules.

ASN.1 allowsASN.1 allows
        Designers to concentrate on        Designers to concentrate on
application semanticsapplication semantics

        Design without encoding-        Design without encoding-
related bugs and with compactrelated bugs and with compact
encodings availableencodings available

        Implementors to write minimum        Implementors to write minimum
code to support the application - fastcode to support the application - fast
developmentdevelopment

        Bug-free encode/decode with        Bug-free encode/decode with
absence of interworking problems.absence of interworking problems.
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Chapter 2
Introduction to ASN.1

(Or:  Read before you write!)

Summary:

The best way of learning any language or notation is to read some of it.  This chapter
presents a small example of ASN.1 type definitions and introduces the main concepts of:

• built-in key-words,

• construction mechanisms,

• user-defined types with type-reference-names,

• identifiers or "field-names",

• alternatives.

There is a reference to "tagging" which is discussed in more detail in Section II.

This chapter is intended for beginners in ASN.1, and can be skipped by those who have
already been exposed to the notation.

1  Introduction

Look at Figure 13.  The aim here is simply to make sense of the data-structure it is defining - the
information that transmission of a value of this structure would convey.

Figure 13 is an "artificial" example designed to illustrate the features of ASN.1. It does not
necessarily represent the best "business solution" to the problem it appears to be addressing, but
the interested reader could try to invent a plausible rationale for some of its more curious features.
For example, why have different "details" been used for "uk" and for "overseas" when the
"overseas" case can hold any information the "uk" case can?  Plausible answer, the "uk" case was
in version 1, and the "overseas" was added later when the business expanded, and the designer
wanted to keep the same bits-on-the-line for the "uk" case.

This example is built-on as this book proceeds, and the scenario for this "Wineco protocol"
appears in Appendix 1 with the complete protocol in Appendix 2.

ASN.1 is not, of course, normally published in multiple fonts, but rather in just one font (Courier
very often).  We will return to that point later!
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2  The example

Refer to figure 13 constantly!  Note that the lines of four dots are not part of the ASN.1 syntax –
they just mean that I have not completed that part of the specification.

Order-for-stock ::= SEQUENCE
   {order-no       INTEGER,
    name-address   BranchIdentification,
    details        SEQUENCE OF
                   SEQUENCE
                 {item      OBJECT IDENTIFIER,
                  cases     INTEGER},
    urgency        ENUMERATED
                 {tomorrow(0),
                  three-day(1),
                  week(2)}  DEFAULT week,
    authenticator Security-Type}

....

....

BranchIdentification ::= SET
         {unique-id  OBJECT IDENTIFIER,
          details    CHOICE
              {uk  [0] SEQUENCE
                     {name      VisibleString,
                      type      OutletType,
                      location  Address},
               overseas [1] SEQUENCE
                      {name    UTF8String,
                       type    OutletType,
                       location Address},
               warehouse [2] CHOICE
                    {northern  [0] NULL,
                     southern  [1] NULL} } }

....

....

Security-Type ::=  SET
       { ....
         ....
         .... }

       Figure 13:  An (artificial) example of ASN.1
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2.1  The top-level type

There is nothing in the example (other than that it
appears first) to tell the reader clearly that "Order-
for-stock" is the top-level type, the type whose
values form the abstract syntax, the type which
when encoded provides the messages that are
transmitted by this application.  In a real ASN.1
specification, you would discover this from human-
readable text associated with the specification, or in
post-1994 ASN.1 by finding a statement:

  my-abstract-syntax  ABSTRACT-SYNTAX ::=
   {Order-for-stock IDENTIFIED BY
     {joint-iso-itu-t international-organization(23) set(42) set-vendors(9)

 wineco(43) abstract-syntax (1)}}

This simply says that we are naming the abstract syntax "my-abstract-syntax", that it consists of
all the values of the type "Order-for-stock", and that if it were necessary to identify this abstract
syntax in an instance of computer communication, the value given in the third line will be used.
This is your first encounter with a piece of ASN.1 called "an OBJECT IDENTIFIER value"
(which you will frequently find in ASN.1 specifications).  The whole of that third line is actually
just equivalent to writing a string of numbers:

                          {2  23  42  9  43  1}

But for now, lets ignore the OBJECT IDENTIFIER value and go back to the main example in
figure 13.

2.2  Bold is what matters!

he parts in bold are the heart of the ASN.1
language.  They are reserved words (note that
they mainly are all upper-case - case does matter
in ASN.1), and reference built-in types or
construction mechanisms.  A later chapter goes
through each and every built-in type and
construction mechanism!

2.3  Names in italics are used to tie
things together

The parts in italic are names which the writer has
freely chosen to name the application’s types.
They usually carry a good hint to a human reader
about the sort of information that type is intended
to carry, but for a computer, their sole purpose is
to link together different parts of the specification.

So, for example, we have the type-reference-name "BranchIdentification" appearing in the third
line of "Order-for-stock". This is legal if and only if somewhere else in the specification (in this
case further down, but it could have been earlier) there is precisely one "type assignment" giving a

Top-level typeTop-level type

All application specifications contain aAll application specifications contain a
(single) ASN.1 type that defines the(single) ASN.1 type that defines the
messages for that application.  It willmessages for that application.  It will
often (but need not) appear first in theoften (but need not) appear first in the
specification, and is a good place tospecification, and is a good place to
start reading!start reading!

Most names present in a specification areMost names present in a specification are
eithereither

        - names of built-in types or other        - names of built-in types or other
          built-in keywords  (usually          built-in keywords  (usually
          all upper case), or          all upper case), or

        - type-reference-names (mixed        - type-reference-names (mixed
           case, starting upper), or           case, starting upper), or

        - names of elements or alternatives        - names of elements or alternatives
          in more complex types (mixed          in more complex types (mixed
          case, starting lower), or          case, starting lower), or

        - (less commonly seen) value-        - (less commonly seen) value-
           reference-names (mixed case,           reference-names (mixed case,
           starting lower), or           starting lower), or

         - names of enumerations (mixed         - names of enumerations (mixed
            case starting lower).            case starting lower).
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type for "BranchIdentification".  As far as a computer is concerned, the whole of the text
following

        BranchIdentification ::=

starting with "SET", and up to the closing curly bracket matching the one following "SET", can be
used to textually replace the type-reference-name "BranchIdentification" wherever it appears.  The
resulting ASN.1 would be unchanged.  Of course, if "BranchIdentification" is referenced in many
different places, we would then have multiple copies of the text of the associated type, which
would be very error prone, and would make the specification hard to read, so use of type-
reference-names in such cases is a “good thing”.  But that is a matter of style that is dealt with in a
later chapter.

2.4  Names in normal font are the names of fields/elements/items

The names in normal font are again chosen arbitrarily by the application designer, and again are
irrelevant to a computer, but help a human reader to understand the specification.  They also
provide a "handle" for human-readable text to clearly specify the semantics associated with the
corresponding part of the specification.

It may be helpful initially to think of the normal font words as the names of fields of a record
structure, with the following bold or italic word giving the type of that field.  The correct ASN.1
terminology is to say that the normal font words are either:

• naming elements of a sequence,

• naming elements of a set,

• naming alternatives of a choice, or

• (in one case only) naming enumerations.

If an ASN.1 tool is used to map the ASN.1 specification to a data-structure definition in a
programming language, these normal font names are mapped to identifiers in the chosen language,
and the application code can set or read values of the corresponding parts of the data-structure
using these names.

The alert reader - again! - will immediately wonder about the length of these names, and the
characters permitted in them, and ask about any corresponding problems in doing a mapping to a
given programming language.  These are good questions, but will be ignored for now, except to say
that all ASN.1 names can be arbitrarily long, and are distinct even if they differ only in their
hundredth character, or even their thousandth (or later)!  Quite long names are fairly common in
ASN.1 specifications.

2.5  Back to the example!

So .... what information does a value of the type "Order-for-stock" carry when it is sent down the
line?

"Order-for-stock" is a structure with a sequence of fields or "elements" (an ordered list of types
whose values will be sent down the line, in the given order).  The first field or element is called
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"order-no", and holds an integer value.  The second is called "name-address" and is itself a fairly
complex type defined later, with a lot of internal structure.  The next top-level field is called
"details", and is also a fairly complex structured field, but this time the designer, purely as a
matter of style, has chosen to write out the type "in-line" rather than using another type-reference-
name.

This field is a "SEQUENCE OF", that is to say, an arbitrary number of repetitions of what
follows the "SEQUENCE OF" (could be zero).  There is ASN.1 notation to require a minimum or
maximum number of repetitions, but that is not often encountered and is left to later.

What follows is another "SEQUENCE", binding together an "OBJECT IDENTIFIER" field
called "item" and an "INTEGER" field called "cases". (Remember, we are ordering stocks - cases
- of wine!).  So the whole of "details" is arbitrarily many repetitions of a pair of elements - an
object identifier value and an integer value.

You already met object identifier values when we discussed identification of the abstract syntax for
this application.  Object identifiers are world-wide unambiguous names.  Anybody can (fairly!)
easily get a bit of the object identifier name space, and these identifiers are frequently used in
ASN.1-based applications to name a whole variety of objects.  In the case of this example, we use
names of this form to identify an "item" (in this case, the "item" is probably some stock item -
identification of a particular wine).  We also see later that the application designer has chosen to
use identifications of this same form in "BranchIdentification" to provide a "unique-id" for a
branch.

Following the "details" top-level field, we have a field called "urgency" which is of the built-in type
"ENUMERATED".  Use of this type name requires that it be followed by a list of names for the
enumerations (the possible values of the type).  In ASN.1, but not in most programming languages,
you will usually find the name followed by a number in round brackets, as in this example.  These
numbers were required to be present up to 1994, but can now be automatically assigned if the
application-designer so desires.  They provide the actual values that are transmitted down the line
to identify each enumeration, so if the "urgency" is "deliver it tomorrow", what is sent down the
line in this field position is a zero. (The reason for requiring the numbers to be assigned by the
designer in the early ASN.1 specifications is discussed later, but basically has to do with trying to
avoid interworking problems if a version 1 specification has an extra enumeration added in version
2 - extensibility again!)

Again, the “urgency” field has a feature not found in
programming language data-structure definition.  We
see the keyword "DEFAULT".  What this means for
the Basic Encoding Rules (BER - the original ASN.1
Encoding Rules) is that, as a sender's option, that
field need not be transmitted if the intended value is
the value following the word "DEFAULT" - in this
case "week".  This is an example where there is more
than one bit-pattern corresponding to a single
abstract value - it is an encoders option to choose
whether to encode a "DEFAULT" value or not.  For
the later Packed Encoding Rules, the encoder is
required to omit thid simple field if the value is "week", and the decoder assumes that value.  (If
"urgency" had been a more complex data type the situation is slightly different, but that is a matter
for Section III.)

There is another ASN.1 keyword similar to "DEFAULT", namely "OPTIONAL" (not included in
the example in figure 13).  Again, the meaning is fairly obvious:  the field can be omitted, but there

Keyword DEFAULT:  Identifies a default
value for an element of a SEQUENCE or
SET, to be assumed if a value for that
element is not included.

Keyword OPTIONAL:  Identifies an
element for which a value can be omitted.
Omission carries different semantics from
any normal value of the element.
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is no presumption of any default value.  The key-word might be associated, for example, with a
field/element whose name was "additional-information".

Just to return briefly to the question of "What are the precise set of abstract values in the type?",
the answer is that the presence of DEFAULT does not change the number of abstract values, it
merely affects encoding options, but the presence of OPTIONAL does increase the number of
abstract values - an abstract value with an optional field absent is distinct from any abstract value
where it is present with some value, and can have different application semantics associated with
it.

Finally, in "Order-for-stock", the last element is called "authenticator" and is of some (possibly
quite complex) type called "Security-Type" defined by the application designer either before or
after its use in "Order-for-stock".  It is shown in figure 13 as a "SET", with the contents not
specified in the example (in a real specification, of course, the contents of the "SET" would be
fully-defined).  "SET" is very similar to "SEQUENCE".  In BER (the original ASN.1 encoding
rules), it again signals a senders (encoders) option.  The top-level elements (fields) of the SET,
instead of being transmitted in the order given in the text (as they are for SEQUENCE) are
transmitted in any order that is convenient for the sender/encoder.   Today, it is recognised that
encoder options are a "BAD THING" for both security reasons and for the extra cost they impose
on receivers and particularly for exhaustive testing, and there are many who would argue that
"SET" (and the corresponding "SET OF") should never be used by application designers, and
should be withdrawn from ASN.1!  But please refer to Figure 999 again!

Figure 13 shows "Security-Type" being defined later in the specification, but actually, this is
precisely the sort of type that is more likely to be imported by an application designer from some
more specialised ASN.1 specification that defines types (and their semantics) designed to support
security features.

There are mechanisms in ASN.1 (discussed later) to enable a designer to reference definitions
appearing in other specifications, and these mechanisms are often used.  You will, however, also
find that some application designers will copy definitions from other specifications, partly to make
their own text complete without the need for an implementor to obtain (perhaps purchase!)
additional texts, partly to ensure control over and "ownership" of the definition.  If you are using
this book with a colleague or as part of some course,  you can have an interesting debate over
whether it is a good thing to do this or not!

2.6  The BranchIdentification type

Now let us look briefly at the "BranchIdentification" type, which illustrates a few additional
features of the ASN.1 notation.  (For now, please completely ignore the numbers in square
brackets in this definition.  These are called "tags", and are discussed at the end of this chapter.)

This time it has been defined as a "SET", so in BER the elements are transmitted in any order, but
we will take them in textual order.

As an aside (but an important aside), we have already mentioned in Chapter 1 that BER uses a
TLV type of encoding for all elements. Clearly, if the sender is able to transmit the elements of a
"SET" in any order, the value used for the "T" in the TLV of each element has to be different.
(This would not be necessary for SEQUENCE, unless there are OPTIONAL or DEFAULT
elements whose presence or absence had to be detected).  It is this requirement that gives rise to the
"tag" concept introduced briefly below, and covered more fully later.
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The first listed element is "unique-id", an "OBJECT IDENTIFIER" value, which has already
been discussed.  The only other element is "details".  Notice that the name "details" was also used
in "Order-for-Stock".  This is quite normal and perfectly legal - the contexts are different.

It is usual for application designers to use
distinct names for top-level elements in a
SEQUENCE or SET, but it was not actually a
requirement prior to 1994.  It is now a
requirement to have distinct names for the
elements of both "SEQUENCE" and "SET" (and
for the alternatives of a "CHOICE" - see below).
The requirement was added partly because it
made good sense, but mainly because the ASN.1 notation for the values of a type could in some
circumstances be ambiguous if this rule was not followed.

Looking at "details":  this is a "CHOICE", meaning that what goes in this field-position is one of
a number of possible alternatives - in this case there are three possibilities:  the "uk", "overseas",
and "warehouse" alternatives.  (Again, the alert reader will recognise that with the TLV approach
used in BER, the "T" assigned to each of these alternatives has to be distinct if the
receiver/decoder is to correctly determine which one is being transmitted.)

The "uk" alternative is a "SEQUENCE" of three elements:  a "name", a "type" and a "location".
The latter two elements have type names in italics that are therefore presumably fairly complex,
and will be defined earlier or later in the specification.  They are not discussed further here.  The
"name" is a "VisibleString".  This is one of a rather long list (about a dozen) of ASN.1 types
which are "character strings" - strings of characters from some specified character repertoire.  The
names of these types are all mixed upper-lower case, and are one of the few exceptions (the types
carrying calendar date and time are the other main exception) to the rule that built-in types in
ASN.1 (names that cannot be re-defined by the user) are always entirely upper-case (like
"INTEGER", "BOOLEAN", etc).

Values of the "VisibleString" type are strings of printing
ASCII characters, plus "space".  Thus they are fine for
UK or USA names, but would not cope well with other
European countries, and very badly with names from
other parts of the world!

By contrast, the "name" element for the "overseas"
alternative has a type "UTF8String".  If you are into
character encoding schemes, you will have heard of UNICODE (and/or ISO 10646!) and UTF8!  If
you are not .... well, the area is discussed more fully later!  Suffice it to say that "UTF8String"
can contain characters from any of the languages of the world, but with the interesting property
that if the characters just happen to be ASCII characters, the encoding is precisely ASCII!

The UTF8 encoding scheme for characters is relatively new, and was only added to ASN.1 in
1998.  It can legally only be used if the application designer references the 1998 (or later) ASN.1
specification.

But .... - we have already noted that some restrictions were added in 1994 (names of elements of a
"SEQUENCE", "SET" etc were required to be distinct, for example).   Suppose you can't be
bothered to upgrade your (300 pages long!) specification to conform to 1994 or later, but still want
to use UTF8String in a new version?  Well, legally, you CAN'T.  ("Oh yeah?", you say, "What
government has passed that law?", "Which enforcement agency will punish me if I break it?".  I
remain silent!)  But as an implementor/reader, and if you see it happening, you will know what it

Names of elements and alternativesNames of elements and alternatives
Should all be distinct within any givenShould all be distinct within any given
SEQUENCE, SET, or CHOICE (aSEQUENCE, SET, or CHOICE (a
requirement post-1994).requirement post-1994).

ASN.1 has many character stringASN.1 has many character string
types providing support rangingtypes providing support ranging
from pure ASCII text through tofrom pure ASCII text through to
text containing characters from anytext containing characters from any
language in the world.language in the world.
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means!  Of course, as part of an application design team, you would make absolutely sure it did
not happen in your specifications, wouldn't you?

Back to figure 13!  The third alternative in the "details" is "warehouse", and this itself is another
"CHOICE",  with just two alternatives - "northern" and "southern" each with a type "NULL".
What is "NULL"?   "NULL" formally is a type with just a single value (which is itself perhaps
confusingly called "NULL").  It is used where we need to have a type, but where there is no
additional information to include.  It is sometimes called a "place-holder".  Note that in the
"warehouse" case, we could just as well have used a BOOLEAN to decide "northern" v
"southern", or an ENUMERATED.  Just as a matter of style (and to illustrate use of "NULL"!)
we chose to do it as a choice of NULLs.

2.7  Those tags

Now let's discuss the numbers in square brackets - the
"tags".  In post-1994 ASN.1, it is never necessary to
include these numbers.  If they would have been required
pre-1994, you can (post-1994) ask for them to be
automatically generated (called AUTOMATIC
TAGGING), and need never actually include them.
However, in existing published specifications, you will
frequently encounter tags, and should have some
understanding of them.

In some of the very oldest ASN.1-based application specifications you will frequently find the
keyword "IMPLICIT" following the tag, and occasionally today the opposite keyword
"EXPLICIT".  These qualify the meaning of the tag, and are fully described in Chapter 3.

Why do we have tags?  Remember the basic structure of BER:  for a "SEQUENCE", there is a
TLV for each element of the sequence;  these are placed end-to-end to form the "V" part of an
outer-level TLV.  By default the "T" part of the TLV for any basic ASN.1 type such as
"INTEGER" or "BOOLEAN" has a value that is specified in the ASN.1 specification itself, and
the "T" part of the outer-level TLV for a "SEQUENCE" again has a value that is specified in the
ASN.1 specification.

This means that by default, the encoding of the "northern" "NULL" and of the "southern" "NULL"
will be identical - the receiver/decoder would not know which was sent.  The encoding has violated
the necessary and obvious rule that for each alternative of a "CHOICE" the "T" used for each
alternative should be different.  The purpose of the tag is to over-ride the default "T" value
with a value specified in the tag. So with the example as written, the "northern" "T" contains
zero, and the "southern" "T" contains one.   Similarly, it is important to override the default tag on
the outer-level "T" for at least one of the "uk" and "overseas" "SEQUENCE" encodings.  (As a
matter of style, we chose to over-ride both).

A later section fully explains the rules about when tags have to be inserted.  (Pre-1994, figure 13
would be illegal without at least some of the numbers in square brackets - the tags).  The rules are
"the minimum necessary to avoid ambiguity", and once that is understood, the reader will be able
to remember the detailed rules easily enough.  However, there is (normally) no penalty in over-
riding a default tag, and as a matter of style and of a "don't think about it, just do it!" philosophy,
it is quite common to see (as in figure 13) tags sequentially assigned to each of the elements of
every "CHOICE" construction, whether strictly necessary or not.  Similarly (but not done in figure

TagsTags
Numbers in square brackets, notNumbers in square brackets, not
needed post-1994, are there toneeded post-1994, are there to
ensure unambiguous encodings.ensure unambiguous encodings.
They do not affect the informationThey do not affect the information
which can be carried by the values ofwhich can be carried by the values of
an ASN.1 type.an ASN.1 type.
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13), it is also quite common (pre-1994) to see tags applied with sequential tag numbers to all
elements of "SEQUENCE" and of  "SET" constructions.

A final introductory comment:  the above has implied that tags are just plain old numbers.   In
fact, the tag name-space, the value encoded in the "T" part of a TLV is slightly more complicated
than that. You will sometimes find the key-words "APPLICATION" or "PRIVATE" or
"UNIVERSAL" after the opening square bracket, for example:

                Tagged-type ::= [APPLICATION 1] Order-For-Stock

These key-words define the "class" of the tag.  In their absence, the "class" is so-called "context-
specific", which is by far the most common class of tag that is applied.  Full details of tagging
appears in Section II, Chapter 4.

3  Getting rid of the different fonts

Suppose you have a normal ASN.1-based application specification using a single font.   How do
you apply fonts as in figure 13?

First, in principle, you need to know what are the reserved words in the language, including the
names of the character string and the date/time types, and you make sure these become bold!  In
practice, you can make a good guess that any name that is all upper-case goes to bold, but this is
not a requirement.  The "Address" type-reference-name in figure 4 could have been "ADDRESS",
and provided that change was made everywhere in the specification, the result is an identical and
totally legal specification.  But as a matter of style, all upper-case for type reference names is
rarely used.

Any other name which begins with an initial upper case letter you set to italics - it is a type-
reference-name. Type-reference-names are required to begin with an upper-case letter.  After that
they can contain upper or lower case interchangeably.

You will see in figure 13 a mixture of two distinct styles.  In one case a type-reference-name
("Order-for-stock") made up of three words separates the words by a hyphen.  In another case a
type-reference-name ("OutletType") uses another upper-case letter to separate the words, and does
not use the hyphen. "Security-Type" uses both!

You normally don't see a mix of these three styles in a single specification, but all are perfectly
legal.  Hyphens (but not two in adjacent positions, to avoid ambiguity with comment - see below)
have been allowed in names right from the first approved ASN.1 specification, but were not
allowed by drafts prior to that first approved specification, so early writers had no choice, and
used the "OutletType" style.  Of course, nobody ever reads the ASN.1 specification itself - they
just copy what everybody else does!  So that style is still the most common today.  It is, however,
just that - a matter of style, and an unimportant one at that – all three forms are legal and it is a
personal preference which you think looks neater or clearer.

And finally, the normal font:  most names starting with a lower-case letter are names of elements
or alternatives ("order-no", "urgency", etc), and again such names are required to start with an
initial lower-case letter, but can thereafter contain either upper or lower case.

Names beginning with lower case are also required for the names of values.  A simple example is
the value "week" for the "urgency".
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Application specifications can contain not only type assignment statements such as those
appearing in figure 13 (and which generally form the bulk of most application specifications), but
can also contain statements assigning values to "value-reference-names".  The general form of a
value reference assignment is illustrated below:

        my-default-cases INTEGER ::= 20

which is defining the value-reference-name "my-default-cases", of type "INTEGER" to reference
the integer value "20".  It could then be used in the "cases" element in figure 13 as, for example:

        cases INTEGER DEFAULT my-default-cases

4  Tying up some lose ends

4.1  Summary of type and value assignments

First, let us summarise what we have seen so far.  ASN.1
specifies a number of pieces of notation (type-notation)
which define an ASN.1 type.  Some are very simple such
as "BOOLEAN", others are more complex such as that
used to define an enumerated type or a sequence type.  A
type-reference-name is also a piece of type-notation
that can be used wherever ASN.1 requires a piece of
type-notation.

Similarly, ASN.1 specifies a number of pieces of value-notation (any type you can write with
ASN.1 has a defined value-notation for all of its values).  Again, some notations for values are
very simple, such as "20" for integer values, others are more complex, such as the notation for
object identifier values  that you saw at the start of this chapter, or the notation for values of
sequence types.  Again, wherever ASN.1 requires value-notation, a value-reference-name can
be used (provided it has been assigned a value somewhere).

The general form of a type assignment is:

        type-reference-name  ::=  type-notation

and of a value assignment is:

 value-reference-name type-notation ::= value-notation

where the value-notation has to be the "correct" value-notation for the type identified by the type-
notation.  This is an important concept.  Anywhere in ASN.1 where you can use type-notation (for
example to define the type of an element of a "SET" or "SEQUENCE", you can use any legal type-
notation.  However, where value-notation is allowed (for example, in value assignments or after
DEFAULT), there is always a corresponding type-notation called the governor (which might be a
type-reference-name) which restricts the syntax of the value-notation to that which is permitted for
the type identified by the type-notation.

An application specificationAn application specification
contains lots of type assignmentcontains lots of type assignment
statements and occasionally (butstatements and occasionally (but
rarely) some value assignmentrarely) some value assignment
statements.statements.
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So far, you have seen value notation used in the "IDENTIFIED BY" at the start of the chapter, and
following the word DEFAULT.  There are other uses that will be described later, but it remains the
case that value-notation is used much less often than type-notation.

4.2  The form of names

All names in ASN.1 are mixed upper/lower case letters and digits and hyphens (but not two
adjacent or one at the end, to avoid confusion with comment), starting either with an upper case
letter or with a lower case letter, depending on what the name is being used for.  (As you will have
guessed by now, they cannot contain the space character!)  In every case of naming in ASN.1, the
case of the first letter is fixed.  If an upper-case letter is legal, a lower case letter will not be, and
vice-versa.  Names can be arbitrarily long, and are different names if they differ in either content
or case at any position in the name.

Note that because names can contain only letters and digits and hyphens, a name that is followed
by any other character (such as an opening curly bracket or a comma), can have the following
character adjacent to it with no space or new-line, or as a matter of purely personal style, one or
more spaces or new-lines can be inserted.

4.3  Layout and comment

Layout is "free-format" - anywhere that you can put a
space you can put a new-line.  Anywhere you have a
new-line you can remove it and just leave a space.  So a
complete application specification can appear as a single
line of text, and indeed that is basically the way a
computer sees it!

As a matter of style, everybody puts a new line between
each type or value assignment statement, and generally
between each element of a set or sequence and the
alternatives of a choice.  The layout style shown in figure 13 is that preferred by this author, as it
makes the pairing of curly brackets very clear, but a perhaps slightly more common layout style is
to include the opening curly bracket after "SEQUENCE" on the same line as the key-word
"SEQUENCE", for example:

                SEQUENCE {
                  items  OBJECT IDENTIFIER,
                  cases  INTEGER  }

Still other authors (less common) will put the closing curly bracket on a line of its own and align it
vertically with its matching opening bracket.  All pure (and utterly unimportant!) stylistic matters.

On a slightly more serious vein, there was pre-1994 value notation for the “CHOICE” type in the
“BranchIdentification” that would allow:

                details  warehouse  northern  value-ref

as a piece of value notation (where “value-ref” is a value reference name for the “NULL” value).
Remember that ASN.1 allows names to be used before they are assigned in a type or value
assignment, and a poor dumb computer can be hit at the start of the specification with something
looking like:

Names and layoutNames and layout
Names contain letters, digits, orNames contain letters, digits, or
hyphens.  They are arbitrarilyhyphens.  They are arbitrarily
long. Case is significant.  Layoutlong. Case is significant.  Layout
is free format.  Comment startsis free format.  Comment starts
with a pair of adjacent hyphenswith a pair of adjacent hyphens
and ends with a pair of adjacentand ends with a pair of adjacent
hyphens or a new-line.hyphens or a new-line.
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         joe Fred ::= jack jill joseph Mary ::= etc etc

In this case, it cannot determine where the first assignment ends - after "jack" or after "jill" or after
“joseph” - it depends on the actual type of “Fred” - defined later).  This can give a computer a
hard time!  Some of the early tool vendors could not cope with this (even tho' it probably never
actually occurred!), and asked for the "semi-colon" character to be used as a statement separator in
ASN.1.  To this day, if you use these tools, you will need to put in semicolons between all your
type assignments.  (The "OSS ASN.1 Tools" package does not impose this requirement).  The
requirement to insert semi-colons in ASN.1 specifications was resisted, but to assist tool vendors a
"colon" was introduced into the value notation for "CHOICE", so that post-1994 the above value
notation would be written:

          details : warehouse : northern : value-ref

(With or without the spaces, but with the colon.)  And (for example):

joe Fred ::= jack : jill joseph Mary ::= etc etc

has the end of the first assignment after “jill”, whilst:

joe Fred ::= jack : jill: joseph Mary ::= etc etc

has the end of the first assignment after “joseph”. This is another small area where the 1994
specification imposed additional requirements not present pre-1994.

Comment can be inserted wherever spaces and new-lines are allowed.  Comment begins with a pair
of hyphens (with no space between them), and ends either on the first new-line or with another
pair of hyphens.  (This is the only case where "new-line" is different from other forms of white-
space.)

This is a perfectly good and consistent rule, but is not quite the same as that used for a certain
well-known programming language, so take care!  If you want a block of comment spread over
several lines, you need a pair of hyphens at the start of each line.

5  So what else do you need to know?

Really, you are now pretty well able to go away and read ASN.1 specifications!  But as you have
taken the trouble to obtain (perhaps you've even paid for!) this text, you will expect it to go on a
bit further.

In the next few chapters we look at the outer-level structure of an ASN.1-based application
specification, and go through the various built-in types and construction mechanisms (like
"SEQUENCE"), and the associated value notations.  That text is boring!  You will need to read it
quickly!

This will complete all you need to read.  Most of the ASN.1 that was produced prior to 1994, with
the exception of a few less commonly used "advanced" features like sub-typing and mechanisms
for "holes", which are left to Section II.  Section II also contains most of the discussion of the
"new" features that were introduced in 1994, and is important reading for anybody involved in
writing application specifications.
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Section I ends with a more detailed discussion of how to produce implementations using "ASN.1
compilers", and some further guidelines related to implementation.
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Chapter 3
Structuring an ASN.1 specification

(Or: The walls, floors, door-ways and lifts,
with some environmental considerations!)

Summary:

ASN.1-based application specifications consist mainly of type definitions as illustrated in
Section 1 Chapter 2, but these are normally (and are formally required to be) grouped into
collections called modules.

This chapter:

• introduces the module structure,

• describes the form of module headers,

• shows how to identify modules,

• describes how to export and import type definitions between modules.

The chapter also discusses:

• some issues of publication format for a complete application specification, and

• the importance of making machine-readable copy of the ASN.1 parts available.

Part of the definition of a module is the establishment of:

• a tagging environment,

• an extensibility environment

for the type-notations appearing in that specification.  The meaning and importance of
these terms is discussed in this chapter, with final details in Section II.
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1  An example

The example we gave in figure 13 had one
top-level type ("Order-for-stock"), and a
number of supporting types, most of which
we left incomplete.  We will still leave the
supporting types incomplete (and, indeed,
will use three lines of four dots for the body
of all the types to avoid repetition), but will
now otherwise turn the example in Figure

13 into a complete ASN.1 specification that follows the rules of the language, and that could be
fed into an ASN.1 compiler tool.

NOTE — The use of three lines of four dots used in figures 13 and 14 is not legal ASN.1!  It is used in
this book out of sheer laziness! In a real specification there would be a complete list of named and fully-
specified (directly or by type-reference-names) elements. In figure 14, it is assumed that no further type-
reference-names are used in the body of these types - they use only the built-in types of the language like
INTEGER, BOOLEAN, VisibleString, etc.

ModulesModules

All ASN.1 type and value assignments areAll ASN.1 type and value assignments are
required to appear within a required to appear within a modulemodule, starting, starting
with a module header and ending withwith a module header and ending with
"END"."END".

Wineco-ordering-protocol
  {joint-iso-itu-t internationalRA(23) set(42) set-vendors(9)
wineco(43) modules(2) ordering(1)}
DEFINITIONS
        AUTOMATIC TAGS ::=
BEGIN

        Order-for-stock ::=  SEQUENCE
                { ....
                  ....
                  ....}

        BranchIdentification ::= SET
                { ....
                  ....
                  ....}

        Security-Type ::= SET
                { ....
                  ....
                  ....}

        OutletType ::= SEQUENCE
                { ....
                  ....
                  ....}

        Address ::= SEQUENCE
                { ....
                  ....
                  ....}

END

Figure 14:  A complete single-module ASN.1 specification
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The complete specification is shown in figure 14.

This example forms what is called an ASN.1 module consisting of a six-line (in this - simple! -
case) module header, a set of type (or value) assignment statements, and an "END" statement.
This is the smallest legal piece of ASN.1 specification, and many early specifications were of this
form - a single module.  Today, it is more common for a complex protocol to be presented in a
number of ASN.1 modules (usually within a single physical publication or set of Web pages).
This is discussed further later.

It is very common in a real publication for the module header to appear at the start of a page, for
there then to be up to ten or more pages of type assignments (with the occasional value assignment
perhaps), and then the END statement, which terminates the module.  Normally there would be a
page-break after the END statement in a printed specification, whether followed by another module
or not.

But Figure 14 is typical of early ASN.1 specifications, where the total protocol specification was
probably only a few pages of ASN.1,  and a single self-contained module was used for the entire
specification.

Note that whilst the use of new-lines and indentation at the start of this example is what is
commonly used, the normal ASN.1 rule that white-space and new-lines are interchangeable applies
here too - the module header could be on a single line.

We will look in detail at the different elements of the module header later in this chapter, but first
we discuss a little more about publication style.

2  Publication style for ASN.1 specifications

Over the years, different groups have taken different approaches to the presentation of their ASN.1
specifications in published documents.  Problems and variation stem from conflicting desires:

a)  A wish to introduce the various ASN.1 types that form the total specification
gradually (often in a "bottom-up" fashion), within normal human-readable text that
explains the semantics of the different types and fields.

b)  A wish to have in the specification a complete piece of ASN.1 that conforms to the
ASN.1 syntax and is ready to feed into an ASN.1 tool, with the type definitions in either
alphabetical order of type-reference-name, or in a "top-down" order.

c)  The desire not to repeat text, in order to avoid unintended differences, and questions of
which text takes precedence if differences remain in the final product.

There is no one perfect approach - application
designers must make their own decisions in
these areas, but the following two sub-sections
discuss some common approaches.

You may want to consider adding line-You may want to consider adding line-
numbers to your ASN.1 to help referencesnumbers to your ASN.1 to help references
and cross-references ... but these are notand cross-references ... but these are not
part of the language!part of the language!



© OS, 31 May 1999 63

2.1  Use of line-numbers.

One approach is to give line numbers sequentially to the entire ASN.1 specification, as partly
shown in figure 15 (again, lines of four dots are used to indicate pieces of the specification that
have been left out).

It is important to note that if this specification is fed into an ASN.1 tool, the line numbers have to
be removed - they are not part of the ASN.1 syntax, and the writer knows of no tool that provides
a directive to ignore them!

If you have tools to assist in producing it (and they exist), this line-numbered approach also makes
it possible to provide a cross-reference at the end of the specification which gives, for each type-
reference-name, the line number of the type assignment where it is given a type, followed by all the
line numbers where that reference is used.  For a large specification, this approach is VERY
useful to readers.  If you don't do this, then you may wish to re-order your definitions into
alphabetical order.

Once you decide to use line numbers, there are two main possibilities.  You can:

• Only put the ASN.1 in one place, as a complete specification (usually at the end), and use
the line-numbers to reference the ASN.1 text from within the normal human-readable text
that specifies the semantics.

• Break the line-numbered ASN.1 into a series of "figures" and embed them in the
appropriate place in the human-readable text, again using the line-numbers for more
specific references.

The latter approach only works well if the order you have the type definitions in (in the total
specification) is the same as the order in which you wish to introduce and discuss them in the main
text.

001 Wineco-ordering-protocol
002  { joint-iso-itu-t internationalRA(23) set(42) set-vendors(9)
003   wineco(43) modules(2) ordering(1)}
004 DEFINITIONS
005        AUTOMATIC TAGS ::=
006 BEGIN
007
008        Order-for-stock ::=  SEQUENCE
009                {order-no      INTEGER,
010                 name-address  BranchIdentification,

....

....

159               digest   OCTET STRING}
160
161 END

Figure 15:  Module with line numbers
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2.2  Duplicating the ASN.1 text

A number of specifications have chosen to
duplicate the ASN.1 text (usually but not
necessarily without using line numbers).  In this
case the types are introduced with fragments of
ASN.1 embedded in the human-readable text, and
the full module specification with the module
header and the "END" are presented as either the
last clause of the document, or in an Appendix.

Note that where ASN.1 text is embedded in normal human-readable text, it is highly desirable for
it to be given a distinctive font.   This is particularly important where the individual names of
ASN.1 types or sequence (or set) elements or choice alternatives are embedded in a sentence.
Where a distinctive font is not possible, then use of italics or of quotation marks is common for
such cases.  (Quotation marks are generally used in this text.)

If ASN.1 text appears in more than one place, then it used to be common to say that the collected
text in the Appendix "took precedence if there were differences".  Today it is more common to say
that "if differences are found in the two texts, this is a bug in the specification and should be
reported as such".

2.3  Providing machine-readable copy

An annex collecting together the entire ASN.1 is
clearly better than having it totally fragmented
within many pages of printed text, no matter how
implementation is to be tackled.

Prior to the existence of ASN.1 tools, the ASN.1
specification was there to tell an implementor what to code up, and would rarely need to be fed
into a computer, so printed text sufficed.  With the coming of ASN.1 compilers, which enable a
major part of the implementation to be automatically generated directly from a machine-readable
version of the ASN.1 specification, some attention is needed to the provision of such material.

Even if the "published" specification is in electronic form, it may not be easy for a user to extract
the formal ASN.1 definition because of the format used for publication, or because of the need to
remove the line-numbers discussed above, or to extract the material from "figures".

Wherever possible, the "published" specification should identify an authoritative source of
machine-readable text for the complete specification.  This should currently (1998) be ASCII
encoded, with only spaces and new-lines as formatting characters, and using character names (see
Section II Chapter 2) for any non-ASCII characters in value notations.  It is, however, likely that
the so-called UTF8 encodings (again see Section II Chapter 2), allowing direct representation of
any character, will become increasingly acceptable, indeed, preferable.

It is unfortunate that many early ASN.1 specifications were published by ISO and ITU-T, who had
a history of making money from sales of hard-copy specifications and did not in the early days
provide machine-readable material.  However, a number of Editors of the corresponding Standards
and Recommendations did obtain permission to circulate (usually without charge) a  machine-
readable copy of the ASN.1 (usually as ASCII text), but the availability of such material was not
always widely publicised.

You may choose to repeat your ASN.1 text,You may choose to repeat your ASN.1 text,
fragmented in the body of your specificationfragmented in the body of your specification
and complete in an annex - but be carefuland complete in an annex - but be careful
the texts are the same!the texts are the same!

If your implementors use tools, theyIf your implementors use tools, they
will want machine-readable copy:will want machine-readable copy:
consider how to provide this, and toconsider how to provide this, and to
tell them where it is!tell them where it is!
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It is unfortunate that many ASN.1 specifications have had to be re-keyed from printed copies for
use in tools, with all the errors that can cause.  The better tool vendors have built-up over time a
stock of machine-readable specifications (either obtained from Editors or by re-keying themselves)
for the most common protocols, and will supply these to their customers on request.  (The URL in
Appendix 5 provides a link to a list of many ASN.1-based specifications, and in some cases to
sources of machine-readable specifications where these are known to exist.)

3  Returning to the module header!

3.1  Syntactic discussion

Figure 16 repeats the module header lines (with
line numbers).

Let us take the items in turn.  The first line
contains the module name, and is any ASN.1
name beginning with a capital letter.  It is
intended to identify the module and its contents
for human-beings, and would normally be distinct
from any other module name in the same
application specification.  This is not, however, a
requirement, as ASN.1 has no actual concept of a
complete application specification (only of a
complete and legal module)!   We return later to
the question of a "complete specification".

The second/third line is called the module identifier, and is another case of an object identifier
value.  This name-form is required to be distinct from that of any other module - not just from
those in the same application specification, but from any ASN.1 module ever-written or ever to-be-
written, world-wide!  (Including - tho' some might say Figure 999 applies – any later version of
this module.)

Strictly speaking, you don't need to include this second/third line.  It was introduced into ASN.1 in
about 1988, and was left optional partly for reasons of backwards compatibility and partly to take
account of those who had difficulty in getting (or were too lazy to try to get!) a bit of the object
identifier name space.

The module header providesThe module header provides

• A module nameA module name

• A unique module identificationA unique module identification

• Definition of the taggingDefinition of the tagging
environmentenvironment

• Definition of the extensibilityDefinition of the extensibility
environmentenvironment

001 Wineco-ordering-protocol
002  {joint-iso-itu-t internationalRA(23) set(42) set-vendors(9)
003 wineco(43) modules(2) ordering(1)}
004 DEFINITIONS
005        AUTOMATIC TAGS ::=
006 BEGIN
007
008        Order-for-stock ::=  SEQUENCE
009                {order-no      INTEGER,
010                 name-address  BranchIdentification,

....

Figure 16:  The module header
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It is today relatively easy to get some object identifier name-space to enable you to give world-
wide unambiguous names to any modules that you write, but we defer a discussion of how to go
about this (and of the detailed form of an object identifier value) to Section II.  Suffice it to say
that the object identifier values used in this book are "legitimate", and are distinct from others
(legally!) used to name any other ASN.1 module in the world.  If name-space can be obtained for
this relatively unimportant book ....!

The fourth line and the sixth line are "boiler-plate".  They say nothing, but they have to be there!
No alternative syntax is possible.  (The same applies to the "END" statement at the end of the
module.)

The fifth line is one of several possibilities, and determines the "environment" of the module that
affects the detailed interpretation of the type-notation (but not of type-reference-names) textually
appearing within the body of the module.

Designers please note:  Not only is it illegal ASN.1 to write a specification without a module
header and an "END" statement, it can also be very ambiguous because the "environment" of the
type-notation has not been determined.

So ... what aspects of the "environment" can be specified, and what syntax is possible in this fifth
line?

There are two aspects to the "environment", called (in this book) "the tagging environment" and
"the extensibility environment".  The reader will note that these both contain terms that we have
briefly mentioned before, but have never properly explained!  Please don't be disappointed, but the
explanation here is again going to be partial - for a full discussion of these concepts you need to go
to Section II.

The tagging environment (with the string used in line 4 to specify it given in parenthesis) is one of
the following:

• An environment of explicit tagging (EXPLICIT TAGS).

• An environment of implicit tagging (IMPLICIT TAGS).

• An environment of automatic tagging (AUTOMATIC TAGS).

Omission of all of these implies an environment of explicit tagging.  (This is for historical reasons,
as an environment of explicit tagging was the only available tagging environment up to the 1988
specification).

The extensibility environment (with the string used in line 4 to specify it given in parenthesis) is
one of the following:

• An environment requiring explicit extensibility markers (no mention of extensibility in line
4).

• An environment of implied extensibility markers (EXTENSIBILITY IMPLIED).

We discuss these environments below.  If both a tagging and an extensibility environment are being
specified, the text for either one can come first.
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3.2  The tagging environment

The treatment here leans heavily on the effect of tagging
in a TLV-style encoding, and on BER in particular.  It
was to assist in such an encoding scheme that tagging
was introduced into ASN.1.  A more abstract treatment
of tagging applicable to any encoding rules is given in
Section II.

To look more closely at the effects of tagging, let us
review a section from figure 13, repeated in figure 17.

We have already noted that in BER a SEQUENCE is encoded as a TLV, with the "V" part being a
series of TLVs, one for each element of the sequence.  Thus the "overseas" element is a TLV, with
the "V" part consisting of three TLVs, one for each of the three elements.  We have also stated that
the tag "[1]" over-rides the tag value in the outermost "T" for the "overseas" sequence.

Similarly, we have noted that the tag [0] and the
tag [1] on the NULLs overrides the default tag
on the TLV for each NULL.  In this case, the
encoding no longer contains the default tag for
NULL, and the fact that this TLV does actually
represent a NULL (or in other cases an
INTEGER or a BOOLEAN etc) is now only
implied by the tag in the "T" part - you need to
know the type definition to recognise that [0] is
in this case referring to a NULL.  We say that
we have "implicitly tagged the NULL".
Similarly, the "overseas" "SEQUENCE" was
implicitly tagged with tag "[1]".

But what about the tag we have placed on the "warehouse" "CHOICE"? There is a superficial
similarity between "CHOICE" and "SEQUENCE" (they have almost the same following syntax),
but in fact they are very different in their BER encoding.  With "SEQUENCE", following elements
are wrapped up in an outer-level TLV wrapper as described earlier, but with "CHOICE", we
merely take any one of the TLV encodings for one of the alternatives of the "CHOICE", and we use
that as the entire encoding (the TLV) for the "CHOICE" itself.

Where does that leave the tagging of "warehouse"?  Well, at first sight, it will over-ride the tag of
the TLV for the "CHOICE" (which is either "[0]" or "[1]" depending on which alternative was
selected) with the tag "[2]".  Think for a bit, and then recognise that this would be a BUST
specification!  The alternatives were specifically given (by tagging the NULLs) distinct tags
precisely so as to be able to know which was being sent down the line in an instance of
communication, but now we are over-riding both with a common value ("[2]")!  This cannot be
allowed!

To cut a long story short - two forms of tagging are available in ASN.1:

• implicit tagging:  (this is what has been described so far), where the new tag over-rides the
old tag and type information which was carried by the old tag is now only implicit in the
encoding;  this cannot be allowed for a "CHOICE" type;  and

 Three tagging environmentsThree tagging environments

• explicit taggingexplicit tagging

• implicit taggingimplicit tagging

• automatic taggingautomatic tagging

....

        overseas [1] SEQUENCE
               {name     UTF8String,
                type     OutletType,
                location Address},
        warehouse [2] CHOICE
               {northern  [0] NULL,
                southern [1] NULL}

....

    Figure 17:  A fragment of figure 13
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• explicit tagging:  we add a new TLV wrapper specifically to carry the new tag in the "T"
part of this wrapper, and carry the entire original TLV (with the old tag) in the "V" part of
this wrapper;  clearly this is OK for "CHOICE".

Whilst implicit tagging is forbidden for
"CHOICE" types (it is an illegal ASN.1
specification to ask for it), both implicit and
explicit tagging can be applied to any other type.
However, whilst explicit tagging retains
maximum type information, and might help a
dumb line-monitor to produce a sensible display,
it is clearly more verbose than implicit tagging.

Now, what do the different tagging environments mean?

3.2.1  An environment of explicit tagging

With an environment of explicit tagging, all tags produce explicit tagging unless the tag (number
in square brackets) is immediately followed by the keyword "IMPLICIT".

An environment of explicit tagging was the only one available in the early ASN.1 specifications, so
it was common to see the word "IMPLICIT" almost everywhere, reducing readability.  Of course,
it was - and is - illegal to put "IMPLICIT" on a tag that is applied to a "CHOICE" type-notation,
or to a type-reference-name for such notation.

3.2.2  An environment of implicit tagging

With an environment of implicit tagging, all tags are applied as implicit tagging unless one (or
both) of the following apply:

• The tag is being applied to a "CHOICE" type-notation or to a type-reference-name for such
notation;  or

• The keyword "EXPLICIT" follows the tag notation.

In the above cases, tagging is still explicit tagging.  In
practice most specifications written between about
1986 and 1995 specified an environment of implicit
tagging in their module headers, and it was unusual to
see either the keyword "IMPLICIT" or the keyword
"EXPLICIT" after a tag.  Occasionally, EXPLICIT
was used for reinforcement, and occasionally (mainly in
the security world to guarantee an extra TLV wrapper)
on specific types within an environment of implicit tagging.

3.2.3  An environment of automatic tagging

The rules about explicit and implicit tagging add to
what is already a complicated set of rules on when
tagging is needed, and in the 1994 specification, partly
to simplify things for the application designer, and
partly because the new Packed Encoding Rules (PER)
were not TLV-based and made little use of tags, the
ability to specify an environment of automatic

implicit tagging - overrides the "T" part

explicit tagging - adds an extra TLV
wrapper

An environment of implicit taggingAn environment of implicit tagging
only produces implicit taggingonly produces implicit tagging
where it is legal - there is no needwhere it is legal - there is no need
to say "EXPLICIT" on ato say "EXPLICIT" on a
"CHOICE"."CHOICE".

Automatic taggingAutomatic tagging

Set up this environment and forgetSet up this environment and forget
about tags!about tags!
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tagging was added.

In this case, tags are automatically added to all elements of each sequence (or set) and to each
alternative of a choice, sequentially from "[0]" onwards (separately for each “SEQUENCE”,
“SET”, or “CHOICE” construction).  They are added in an environment of implicit tagging
EXCEPT that if tag-notation is present on any one of the elements of a particular “SEQUENCE”
(or “SET”) element or “CHOICE” alternative,  then it is assumed that the designer has taken
control, and there will be NO automatic application of tags.  (The tag-notation that is present is
interpreted in an environment of implicit tagging in this case.)

It is generally recommended today that "AUTOMATIC TAGS" be placed in the module header, and
the designer can then forget about tags altogether!  However (refer back to figure 999 please!),
there is a counter-argument that "AUTOMATIC TAGS" can be more verbose than necessary in
BER, and can give more scope for errors of implementation if ASN.1 tools are not used.  You take
your choice!  But I know what mine would be!

3.3  The extensibility environment

We have already discussed the power of a TLV-
style of encoding to allow additions of elements
in version 2, with version 1 specifications able
to skip and to ignore such additional elements.
(This extensibility concept actually generalises
to things other than sequences and sets, but
these are sufficient for now.)

If we are to retain some extensibility capability in ASN.1 and we are to introduce encoding rules
that are less verbose than the TLV of BER (such as the new PER), then a designer's requirements
for extensibility in his application specification have to be made explicit.

We also need to make sure not only that encoding rules will allow a version 1 system to find the
end of (and perhaps ignore) added version 2 material, but also that the application designer clearly
specifies the actions expected of a version 1 system if it receives such material.

To make this possible, the 1994 specification introduced an extensibility marker into the ASN.1
notation.  In the simplest use of this,
the type-notation "Order-for-stock"
could be written as in figure 18.

Here we are identifying that we
require encoding rules to permit the
later addition of outer-level elements
between "urgency" and
"authenticator", and additional
enumerations, in version 2, without
ill-effect if they get sent to version 1
systems.   (Full details are in Section
II.)  (Should we have been happy to
add the version 2 elements at the end
after "authenticator", then a single
ellipsis would have sufficed.)

The extensibility markerThe extensibility marker

An ellipsis (or a pair) which identifies anAn ellipsis (or a pair) which identifies an
insertion point where version 2 material caninsertion point where version 2 material can
be added without affecting a version 1be added without affecting a version 1
system's ability to decode version 2system's ability to decode version 2
encodings.encodings.

Order-for-stock ::= SEQUENCE
   {order-no       INTEGER,
    name-address   BranchIdentification,
    details        SEQUENCE OF
                   SEQUENCE
                 {item   OBJECT IDENTIFIER,
                  cases  INTEGER},
    urgency        ENUMERATED
                 {tomorrow(0),
                  three-day(1),
                  week(2), ... }  DEFAULT week,
                  ... ,
                  ... ,
    authenticator Security-Type}

Figure 18:  Order-for-stock with extensibility
markers
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The place where the ellipses are placed, and where new version 2 material can be safely inserted
without upsetting deployed version 1 systems is called (surprise, surprise!) the insertion point.
You are only allowed to have one insertion point in any given sequence, set, choice, etc.

The alert reader (you should be getting used to that phrase by now, but it is probably still annoying
- sorry!) will recognise that in addition to warning
encoding rules to make provision, it is also
necessary to tell the version 1 systems what to do
with added material.  In the case of new outer-
level elements, it may appear "obvious" that the
required action would be to silently ignore the
added elements.  But what should a version 1
system do if it receives an "urgency" value that it
does not know about?  There is a further piece of notation (section II again, I am afraid, if you
want details!) called the exception specification which can be added immediately after the
extensibility ellipsis.  (The exception specification starts with an exclamation mark, so you will
know it when you see it!).

Application designers are encouraged to provide exception specifications when they use
extensibility markers, although this has not been made mandatory.

In an environment requiring explicit extensibility markers, the ellipsis, and any implications on
encoding rules and version 1 behaviour which stem from the presence of an ellipsis, only occurs if
the ellipsis is textually present in the specification wherever it is required.

In an environment of implied extensibility markers, all type-notations in that environment which
do not already contain an extensibility marker in constructions where such markers are permitted
automatically have one added at the end of the construction.

So if the type-notation of figure 18 was in an environment of implied extensibility, an additional
extension marker would be automatically inserted at the end of the "SEQUENCE{....}"
construction in the "details" "SEQUENCE OF".

At the time of writing this text, extension
markers are being extensively used, but few
designers have chosen to specify an environment
of implied extensibility markers, even tho' the
cost of having additional, perhaps unnecessary,
insertion points for the insertion of version 2
material is low in terms of bits on the line.

The problem probably stems from three problems with using this environment:

• The insertion point is always at the end - you have no control over its position.

• When producing the version 2 specification, you have to actually insert the ellipses
explicitly before your added elements - and you might forget!

• There is no provision (when this environment is used) for the presence of an exception
specification with the extension marker, so all rules for the required behaviour of version 1
systems in the presence of version 2 elements or values have to be generic to the entire
specification.

Exception specificationException specification

Specification of the behaviour of aSpecification of the behaviour of a
version 1 system in the presence of addedversion 1 system in the presence of added
version 2 elements or values.version 2 elements or values.

Environment of implied extensibility markers:
an environment where any construction without an
extensibility marker (and which is allowed one)
has one added (at its end).
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Concluding advice:  Think carefully about where you want extension markers and about the
handling you want version 1 systems to give to version 2 elements and values (using exception
specifications to localise and make explicit those decisions), but do not attempt a blanket solution
using an environment of implied extensibility.

4  Exports/imports statements

It has taken a lot of text to describe the effects of a
six-line header!  There is much less text in the
ASN.1 Standard/Recommendation!  But we are not
yet done!

Following the sixth line ("BEGIN") and (only)
before any type or value assignment statements,
we can include an exports statement (first) and/or
an imports statement.  These are usually regarded
as part of the module header.

At this point it is important to highlight what has been only hinted at earlier:  there is more in the
ASN.1 repertoire of things that have reference names than just types and values, although these are
by far the most important (or at least, the most prolific!) in most specifications.

Pre-1994 (only) we add macro names, and post-1994 we add names of information object classes,
information objects, and information object sets.  These can all appear in an export or an import
statement, but for now we concentrate only on type-reference-names and value-reference-names.

An exports statement is relatively simple, and is illustrated in figure 19, where we have taken our

Wineco-common-types
      { joint-iso-itu-t internationalRA(23) set(42) set-vendors(9)
wineco(43) modules(2) common(3)}
   DEFINITIONS
        AUTOMATIC TAGS ::=
   BEGIN

   EXPORTS  OutletType, Address;

   OutletType ::=  SEQUENCE
        { ....
          ....
          .... }

   Address ::= SEQUENCE
        { ....
          ....
          .... }

   .....

   END

Figure 19:  The common types module (first attempt)

Exports/Imports statementsExports/Imports statements

A pair of optional statements at the headA pair of optional statements at the head
of a module that specify the use of typesof a module that specify the use of types
defined in other modules (import), or thatdefined in other modules (import), or that
make available to other modules typesmake available to other modules types
defined in this module (export).defined in this module (export).
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type definitions for "OutletType" and "Address", put them into a module of commonly used types,
and exported them, that is to say, made them available for use in another module.

In reality there would be more supporting types in "Wineco-common-types" which we are choosing
not to export - they are not available for use in other modules.  There would probably also be
rather more types exported.

Note the presence of the semi-colon as a statement terminator for the "EXPORTS" statement.  We
will see this being used to terminate the “IMPORTS” statement also.  These are the only two cases
where ASN.1 has a statement terminator.

Note also that for historical reasons
(“EXPORTS” was only added in 1988) the
omission of an “EXPORTS” statement has the
semantics "everything is available for import by
another module", whilst:

        EXPORTS ;

has the semantics "nothing is available for import by another module".

Next we are going to assume that the "Security-Type" which we first used in Figure 13 is being
imported from the Secure Electronic Transactions (SET) specification (a totally separate
publication), and will be used in our "Wineco-common-types" module but also in our other
modules.  We import this for use in the "Wineco-common-types" module, but also export it again
to make the imports clauses of our other modules simpler (they merely need to import from
"Wineco-common-types").  This "relaying" of type definitions is legal.

Absence of an EXPORTS statementsAbsence of an EXPORTS statements
means "exports EVERYTHING".  Themeans "exports EVERYTHING".  The
statement "EXPORTS ;" means "exportsstatement "EXPORTS ;" means "exports
NOTHING".NOTHING".

Wineco-common-types
      { joint-iso-itu-t internationalRA(23) set(42) set-vendors(9)
        wineco(43) modules(2) common(3)}
   DEFINITIONS
        AUTOMATIC TAGS ::=
   BEGIN

   EXPORTS  OutletType, Address, Security-Type;

   IMPORTS Security-Type FROM
   SET-module

       {joint-iso-itu-t internationalRA(23) set(42) module(6) 0};

   OutletType ::=  SEQUENCE
        { ....
          ....
          .... }

   Address ::= SEQUENCE
        { ....
          ....
          .... }

   .....

   END

Figure 20:  The common types module (enhanced)
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This changes figure 19 to figure 20.

As with EXPORTS, the text between "IMPORTS" and "FROM" is a comma separated list of
reference names.  We will see how to import from more than one other module in the next figure.

Note at this point that if a type is imported from a module with a particular tagging or extensibility
environment into a module with a different tagging or extensibility environment, the type-notation
for that imported type continues to be interpreted with the environment of the module in which it
was originally defined.  This may seem obvious from the way in which the environment concept
was presented, but it is worth reinforcing the point - what is being imported is in some sense the
"abstract type" that the type-notation defines, not the text of the type-notation.

5  Refining our structure

The final exampleThe final example

We now use several modules, we have a CHOICE as our top-level type and we clearly identifyWe now use several modules, we have a CHOICE as our top-level type and we clearly identify
it as our top-level type, We use an object identifier value-reference-name, we useit as our top-level type, We use an object identifier value-reference-name, we use
APPLICATION class tags, we handle invalid encodings, we have extensibility at the top-APPLICATION class tags, we handle invalid encodings, we have extensibility at the top-
level with exception handling.   We are getting quite sophisticated in our use of ASN.1!level with exception handling.   We are getting quite sophisticated in our use of ASN.1!
Now we are going to make quite a few changes!  We will add a second top-level message (and
make provision for more) called "Return-of-sales" defined in another module, and we will now
include the “ABSTRACT-SYNTAX” statement (mentioned in Chapter 2) to define our new top-
level type in yet another module, that we will put first.

We will do a few more cosmetic changes to this top-level module, to illustrate some slightly more
advanced features.  We will:

• use "APPLICATION" class tags for our top-level messages. This is not necessary, but is
often done (see later discussion of tag classes)

• assign the first part of our long object identifiers to the value-reference-name "wineco-
OID" and use that as the start of our object identifiers, a commonly used feature of ASN.1.

• add text to "ABSTRACT-SYNTAX" to make clear that if the decoder detects an invalid
encoding of incoming material our text will specify exactly how the system is to behave.

The final result is shown in Figure 21, which is assumed to be followed by the text of Figure 20.
Have a good look at Figure 21, and then read the following text that "talks you through it".

Lines 001 to 006 are nothing new. Note that in lines 10 and 13 we will use "wineco-OID" (defined
in lines 015 and 016) to shorten our object identifier value, but we are not allowed to use this in
the module header, as it is not yet within scope, and the object identifier value must be written out
in full.

Line 007 simply says that nothing is available for reference from other modules.
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001    Wineco-common-top-level
002       { joint-iso-itu-t internationalRA(23) set(42) set-vendors(9)
003         wineco(43) modules(2) top(0)}
004    DEFINITIONS
005         AUTOMATIC TAGS ::=
006    BEGIN
007    EXPORTS ;
008    IMPORTS Order-for-stock FROM
009        Wineco-ordering-protocol
010       {wineco-OID modules(2) ordering(1)}
011            Return-of-sales FROM
012       Wineco-returns-protocol
013       {wineco-OID modules(2) returns(2)};
014
015    wineco-OID OBJECT IDENTIFIER ::=
016         { joint-iso-itu-t internationalRA(23)
017                    set(42) set-vendors(9) wineco(43}}
018    wineco-abstract-syntax  ABSTRACT-SYNTAX ::=
019              {Wineco-Protocol IDENTIFIED BY
020                               {wineco-OID abstract-syntax(1)}
021                               HAS PROPERTY
022                               {handles-invalid-encodings}
023                               --See clause 45.6 --   }
024
025    Wineco-Protocol ::= CHOICE
026        {ordering  [APPLICATION 1] Order-for-stock,
027         sales     [APPLICATION 2] Return-of-sales,
028         ... ! PrintableString : "See clause 45.7"
029        }
030
031    END
--New page in published spec.
032   Wineco-ordering-protocol
033   { joint-iso-itu-t internationalRA(23) set(42) set-vendors(9)
034     wineco(43) modules(2) ordering(1)}
035    DEFINITIONS
036         AUTOMATIC TAGS ::=
037    BEGIN
038    EXPORTS Order-for-stock;
039    IMPORTS OutletType, Address, Security-Type FROM
040 Wineco-common-types
041             {wineco-OID modules(2) common (3)};
042
043    wineco-OID OBJECT IDENTIFIER ::=
044         { joint-iso-itu-t internationalRA(23)
045                    set(42) set-vendors(9) wineco(43}}
046
047    Order-for-stock ::=  SEQUENCE
048             { ....
....              ....
....              .... }
....
070    BranchIdentification ::= SET
071             { ....
....              ....
....              ....}

....

....   ....

....
101    END

Figure 21 (first part):Last figure for this chapter!
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Lines 008 to 013 are the imports we were expecting from our other two modules.   Note the syntax
here:  if we had more types being imported from the same module, there would be a comma
separated list as in line 039, but when we import from two different modules lines 011 to 013 just
run on from lines 008 and 010 with no separator.

Lines 015 and 017 provide our object identifier value-reference-name with a value assignment.  It
is a (very useful!) curiosity of the value notation for object identifiers that it can begin with an
object identifier value-reference-name which "expands" into the initial part of a full object
identifier value, and is then added to, as we see in lines 010, 013, and 020. If you want to jump
ahead, and are interested, the OID tree is more fully described in Chapter 1 of Section II.

Lines 018 to 023 are the "piece of magic" syntax that defines the top-level type, names the abstract
syntax, and assigns an object identifier value to it - something which in older specifications would
be done in human-readable text.  In fact, this syntax is not "ad hoc" it is an example of an
information object assignment statement which will be discussed in Section II.

The "HAS PROPERTY" and lines 22 to 23 is the only "property" that can be specified at present.
The inclusion of this syntax is partly to counter an old OSI view-point that decoding was a
separate layer from the application, and that if decoding failed to produce a recognised abstract
value, all you could do was abort the connection!   (Do check Figure 999 again!)  Stupid idea!  But
including lines 20 to 23 reassures the reader that the specification does indeed contain (in clause
45.6) text to cover what to do in this case.

Lines 025 to 029 define the single-ASN.1-type that we need for our top-level messages to ensure
that each encoding (of either or our main message types) is unambiguous.  If we simply applied
BER to the two types "Order-for-stock" and "Return-of-sales-data", we could (and probably
would) get a bit-pattern used for a value of one type also being used as an encoding for a value of
the other type.   By forming a new CHOICE type, the rules for tag uniqueness of a CHOICE type
solve this problem.  Notice that we have used "AUTOMATIC TAGS" in line 005, so there was no
need to add any tags in lines 026 and 027,  but as a matter of personal preference and style, we
chose to take complete control of the "T" value in the outermost TLV of our messages and make
one an encoding of "[APPLICATION 0]" and the other of "[APPLICATION 1]", no matter what
the original tags were.  Some designers argue that this is helpful for hand-encoders - it is certainly
irrelevant to those using a tool.  Notice that the presence of tags in lines 026 and 027 disables
automatic tagging for the CHOICE in line 025, temporarily replacing the tagging environment with
an environment of implicit tagging.

Line 028 tells us that in version 2 we suspect we may need more outer-level messages, and that
encoding rules must ensure that adding such messages does not prevent version 1 systems from
correctly receiving messages that were in version 1.  The exclamation mark and following material
(the exception specification - described in detail in Section II) in line 028 tells us that clause 45.7
details the actions that a version 1 system should take if it receives messages added in version 2 (or
later).

Lines 032 to 101 are our second module (the development of the original Figure 13), and contain
nothing new.  Note, however, that lines 043 and 045 are a repetition of 015 to 017, and this might
seem undesirable.  It would have been possible to define "wineco-OID" in yet another module (with
lots of other value-reference-names we might need), and to import that name from that module.
However, we would not (for obvious "infinite recursion") reasons be allowed to use "wineco-OID"
in the "FROM" for that import, so we would end up writing out as much text (and repeating it in
each module where we wish to do the import) as we have written in lines 015 to 017 and 043 to
045.  What we have is about as minimal as we can get.
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Lines 102 to 139 are our third module, structurally the same as 032 to 101, and introducing
nothing new.  The whole specification then concludes with the text of Figure 20, giving our
"common-type" module, which we have already discussed.

6  Complete specifications

As was stated earlier, there is no concept in ASN.1 of a "complete specification", only of correct
(complete) modules, some of which may include an "ABSTRACT-SYNTAX" statement to identify
a top-level type (or which may contain a top-level type identified in human-readable text).

In many cases if a module imports a type from some other module, the two modules will be in the
same publication (loosely, part of the same specification), but this is not a requirement.  Types can
be imported from any module anywhere.

Suppose we take a top-level type in some module, and follow the chain of all the type-reference-
names it uses (directly or indirectly) within its own module, and through import and export links
(again chained to any depth) to types in other modules.  This will give us the complete set of types
that form the "complete specification" for the application for which this is the top-level type, and
the specifications of all these types have (of course) to be available to any implementor of that
application and to any ASN.1 compiler tool assisting in the implementation.   Purely for the
purposes of the final part of this chapter of this book, this tree of type definitions will be called the
application-required types.

It is important advice to any application designer to make it very clear early in the text of any
application specification precisely which additional (physical) documents are required to
obtain the definitions of all the application-required types.

--New page in published spec.
102    Wineco-returns-protocol
103 { joint-iso-itu-t internationalRA(23) set(42)
104   set-vendors(9) wineco(43) modules(2) returns(2)}
105    DEFINITIONS
106        AUTOMATIC TAGS ::=
107    BEGIN
108    EXPORTS Return-of-sales;
109    IMPORTS OutletType, Address, Security-Type FROM
110 Wineco-common-types
111             {wineco-OID modules(2) common (3)};
112
113    wineco-OID OBJECT IDENTIFIER ::=
114       {iso identified-organization icd-wineco(10)}
115
116    Return-of-sales ::=  SEQUENCE
117             { ....
....              ....
....              .... }
....
....   ....
....
139    END

Figure 21 (last part):Last figure for this chapter!



© OS, 31 May 1999 77

But suppose we now consider the set of modules in which these application-required types were
defined.  (Again, purely for the next few paragraphs, we will call these the application-required
modules).

In general, the module textually containing the top-level type probably does not contain any types
other than those which are application-required types (although there is no requirement that this be
so).  But as soon as we start importing, particularly from modules in other publications which
were perhaps produced to satisfy more general requirements, then there are likely to be some types
defined in application-required modules that are not application-required types!

As we shall see later, tools vary in their intelligence. There are some tools that require you to
physically extract referenced types and put everything into the same module with the top-level type
first!  This is at the extreme bad end, and can give real problems if the tagging or extensibility
environments of the different modules are different.

The best tools will allow you to present them with machine-readable text (perhaps in several files)
that contains all the application-required modules (and a directive identifying the top-level type),
and will extract from those modules only the application-required types, mapping only those to
data structures in your chosen programming language.  (This keeps the memory requirement for
the implementation to a minimum).

Remember the discussion you had with yourself earlier (as a potential application designer) about
the pros and cons of referencing (importing) or textually copying types from other modules?  You
may re-open that discussion!

7  Conclusion

We have come a long way from our simple type assignments in Figure 13!

The high-level structure of an ASN.1-based application specification has been described and
explored, and most of the important concepts have now been introduced.

But a word of caution:  the simple protocol we have used here for illustration would probably be
better structured as the single-ASN.1-module outlined in Figure 14. The additional power (but
complexity) of multiple modules with export/import is important for large specifications, but
should not be used unnecessarily - keep it as simple as possible!  If the Figure 14 structure will do,
stay with Figure 14!

It now remains to complete the discussion of the ASN.1 type and value notations for the simple
built-in types and the construction mechanisms (this is done in the next chapter), and (in Section II
– with an introduction in the Chapter 5 of this section) to give a fuller treatment of the more
advanced concepts we have mentioned, and to discuss more of the features added in 1994.

The reader should, however, now be able to read and to understand the bulk of most real ASN.1
specifications produced before 1994, and to recognise the use of some features introduced in the
1994 ASN.1.  Read on!
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Chapter 4
The basic data types and construction

mechanisms - closure

(Or: You need bricks - of various shapes and sizes!)

Summary:

There are a number of types that are pre-defined in ASN.1, such as:

• INTEGER,

• BOOLEAN,

• UTF8String.

These are used to build more complex user-defined types with construction mechanisms
such as:

• SEQUENCE,

• SET,

• CHOICE,

• SEQUENCE OF,

• SET OF,

• etc.

Many of these construction mechanisms have appeared in the examples and illustrations of
earlier chapters.

This chapter completes the detailed presentation of all the basic ASN.1 types, giving in
each case a clear description of:

• the type-notation for the type,

• the set of abstract values in the type, and

• the value-notation for values of that type.
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Additional pieces of type/value-related notation are also covered, largely completing the
discussion of syntax commonly used in pre-1994 specifications.

The chapter ends with a list of additional concepts whose treatment is deferred to either the
next chapter (Discussion of advanced features), or to Section II.

1  Illustration by example

In order to illustrate some of the type and value
notations, we will define our Return-of-Sales
message as in Figure 22.  Figure 22 has been
designed to include all the basic ASN.1 types
apart from NULL, and provides the hook for
further discussion of these types.

Have a good look at Figure 22.  It should by now be fairly easy for you to understand its meaning.
If you have no problems with it, you can probably skip the rest of this chapter, unless you want to
understand ASN.1 well-enough to write a book, or to deliver a course, on it! (We included wineco-
items in Figure 22 to reduce the verbosity of the object identifier values in figure 23 later!)

Return-of-sales ::= SEQUENCE
     {version       BIT STRING
               {version1 (0), version2 (1)} DEFAULT {version1},
      no-of-days-reported-on  INTEGER
            {week(7), month (28), maximum (56)} (1..56) DEFAULT week,
      time-and-date-of-report  CHOICE
                 {two-digit-year  UTCTime,
                  four-digit-year GeneralizedTime},
               -- If the system clock provides a four-digit year,
               -- the second alternative shall be used.  With the
               -- first alternative the time shall be interpreted
               -- as a sliding window.
      reason-for-delay  ENUMERATED
            {computer-failure, network-failure, other} OPTIONAL,
               -- Include this field if and only if the
               -- no-of-days-reported-on exceeds seven.
      additional-information  SEQUENCE OF PrintableString OPTIONAL,
               -- Include this field if and only if the
               -- reason-for-delay is "other".
      sales-data  SET OF Report-item,
      ... ! PrintableString : "See wineco manual chapter 15"}

Figure 22 (part 1):  Illustration of the use of basic ASN.1 types

Figure 22 has been carefully constructedFigure 22 has been carefully constructed
to complete your introduction to all theto complete your introduction to all the
basic ASN.1 types - that's it folks!basic ASN.1 types - that's it folks!
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2  Discussion of the built-in types

2.1  The BOOLEAN type

(See "ran-out-of-stock" in figure 22).  There is nothing to add here. A "BOOLEAN" type has the
obvious two abstract values, true and false, but notice that the value-notation is the words "TRUE"
or "FALSE" all in capital letters.  You can regard the use of capitals as either consistent with the
fact that (almost) all the built-in names in ASN.1 are all upper-case, or as inconsistent with the
fact that ASN.1 requires that value-reference-names begin with a lower case letter!  ASN.1 does
not always obey its own rules!

2.2  The INTEGER type

(See "number-of-days-reported-on" in
figure 22).  This example is a little more
complicated than the simple use of
"INTEGER" that we saw in Figure 13!
The example here contains what are
called distinguished values.  In some
early ASN.1 specifications
(ENUMERATED was not added until
around 1988) people would sometimes
use the “INTEGER” type with a list of
distinguished values where today they
would use “ENUMERATED”.  In fact,
the syntax can look quite similar, so we
can write the equivalent of the example in
figure 13 as:

Report-item ::= SEQUENCE
    {item                 OBJECT IDENTIFIER,
     item-description     ObjectDescriptor OPTIONAL,
         -- To be included for any newly-stocked item.
     bar-code-data        OCTET STRING,
         -- Represents the bar-code for the item as specified
         -- in the wineco manual chapter 29.
     ran-out-of-stock  BOOLEAN DEFAULT FALSE,
         -- Send TRUE if stock for item became exhausted at any
         -- time during the period reported on.
     min-stock-level      REAL,
     max-stock-level      REAL,
     average-stock-level  REAL
       -- Give minimum, maximum, and average levels during the
       -- period as a percentage of normal target stock-level-- }

wineco-items OBJECT IDENTIFIER ::=
     { joint-iso-itu-t internationalRA(23) set(42) set-vendors(9)
wineco(43) stock-items (0)}

      Figure 22 (part 2):  Illustration of the use of basic ASN.1 types

The integer typeThe integer type

• Just the word INTEGER, nice andJust the word INTEGER, nice and
simple!;  and/orsimple!;  and/or

• Add a distinguished value list;  and/orAdd a distinguished value list;  and/or

• Add a range specification (subtyping);Add a range specification (subtyping);
thenthen

• Put an extension marker and exceptionPut an extension marker and exception
specification in the range specification!specification in the range specification!
(Getting complicated again!)(Getting complicated again!)
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     urgency  INTEGER
             {tomorrow (0),
              three-day (1),
              week (2)}  DEFAULT week

It is, however, important here to notice some important differences.  The presence of the list
following “INTEGER” is entirely optional (for “ENUMERATED” it is required),  and the
presence of the list does in no way affect the set of abstract values in the type.

The following two definitions are almost equivalent:

        My-integer ::=  INTEGER {tomorrow(0), three-day (1), week(2) }

and

        My-integer ::= INTEGER
        tomorrow My-integer ::= 0
        three-day My-integer ::= 1
        week My-integer ::= 2

The difference lies in ASN.1 scope rules.  In the second example the names "tomorrow" etc are
value-reference-names that can be assigned only once within the module, can be used anywhere
within that module where an integer value is needed (even, in fact, as the number on an
enumeration or in another distinguished value list or in a tag - but all these uses would be
unusual!), and can appear in an EXPORTS statement at the head of the module.  On the other
hand, in the first example, the names "tomorrow" etc cannot be exported, can appear (with the
same or different values) in other distinguished value lists, or indeed as value-reference names for
a value of some totally different type.  The name "tomorrow" in the first example has the meaning
of identifying the zero value of “My-integer” ONLY when it appears in value notation that is
governed by the type “My-integer”, such as when it is used as the “DEFAULT” value for a
sequence element of that type.

Notice also that although we have been using numbers in distinguished value lists in ascending
order, there is no requirement for this - the order is irrelevant, and does not affect the resulting
definitions.

We have seen that a decimal number can be used as value-notation for a positive integer value.
Negative values are, for example:

          minus-two INTEGER ::=  -2

but you are not allowed to write "-0", nor is any form of binary or hex notation valid as value-
notation for the “INTEGER” type.

What are the set of abstract values for “INTEGER”?  An early draft of the ASN.1 specification
actually stated the maximum and minimum values of ASN.1 integers, based on restrictions
imposed by BER encodings.  However, a calculation showed that with a communications line
running at a terabit a second, it would take approximately 100 million years to transmit the largest
or smallest value!  ASN.1 integers are "effectively unbounded".  (And in the more recent PER
encodings, there is no limit on the size of an integer value.)

This raises the beginnings of a discussion that more properly belongs in a later chapter - do you
really have to write your implementation code to handle arbitrarily large integers?  If we look
again at "no-of-days-reported-on" in Figure 13, we see the text "(1..56)" following the
distinguished value list.  (This can be present whether we have a distinguished value list or not).
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This is our first example of a subtype constraint - a notation that restricts the range of our integer,
or subsets it.  In this case it is saying that the only values a conforming sender is permitted to send
are values in the range 1 to 56, and it is clear that an implementor need only allocate one byte for
this field.  A fuller discussion of subtype notation (for other types as well as for the integer type)
appears later, but this simple restriction of the range of an integer is by far the most common use
of this notation.  Application designers are encouraged to place a range constraint such as this
on “INTEGER” types whenever they can do so,  and to explicitly state in comment if they
expect implementors to truly handle arbitrarily large integers.  However, as an implementor, if
you see simply "INTEGER", with no range constraint and no clarifying text, it is usually a safe
assumption that a four-octet integer value will be the largest you will receive.

One final point:  the similarity of the syntax for defining distinguished values to that for defining
enumerations can be confusing.  As the definition of distinguished values does not change in any
way the set of abstract values in the type or the way they are encoded, there is never any
"extensibility" question in moving to version 2 - if additional distinguished values are added, this is
simply a notational convenience and does not affect the bits on the line.  So the ellipsis
extensibility marker (available for the list in the enumerated type), is neither needed nor allowed in
the list of distinguished values (although it can appear in a range constraint, as we will see later).

2.3  The ENUMERATED type

(See "urgency" in figure 13 and "reason-for-delay" in
figure 22).  There is little to add to our earlier
discussions.  The numbers in round brackets were
required pre-1994, and are optional post-1994.  The
type consists precisely and only of values
corresponding to each of the listed names.

The numbers were originally present to avoid
extensibility problems - if version 2 added a new enumeration, it was important that this should not
affect the values used (in encodings) to denote original enumerations, and the easiest way to ensure
this was to let the application designer list the numbers to be used.  Post-1994, extensibility is
more explicit, and we might see:

        Urgency-type ::= ENUMERATED
               {tomorrow,
                three-day,
                week,
                ...,
                 -- Version 1 systems should assume any other value
                 -- means "week".
                month}

Here "month" was added in version 2, although the requirement placed on version 1 systems when
version 1 was first specified actually means that such deployed systems will treat "month" as
"week".  This illustrates the importance of thinking hard about the exception handling you want
from version 1 systems.  If instead the version 1 spec had said "treat any unknown enumeration as
tomorrow", then the effect of adding "month" in version 2 might have been less satisfying!  Notice
that in this case we chose to give the exception-handling behaviour in comment after the ellipsis,
rather than using an exception specification - this is quite satisfactory, particularly if the exception
handling is peculiar to this field.  Selection of appropriate exception handling is discussed further
in 2.6 of Chapter 7.

EnumeratedEnumerated

Can have an extension marker.Can have an extension marker.

Numbers for encodings needed pre-Numbers for encodings needed pre-
1994, optional post-1994.1994, optional post-1994.
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Finally, if you want to be really weird, you can put numbers in for some enumerations and not for
others.  If you are lucky, the result will still be legal!  Go and read the ASN.1 specification if you
want to do daft things like that, this
book will not help you!

2.4  The REAL type

(See "min-stock-level" etc in Figure
22).  The type-notation for the
“REAL” type is given in Figure 22.
This is the only option.

The value notation is slightly
curious.  Here are examples of some pieces of value notation for the real type:

                v1 REAL ::= {mantissa 314159, base 10, exponent -5}
                v2 REAL ::= {mantissa 3141590, base 10, exponent -6}
                v3 REAL ::= {mantissa 1, base 2, exponent -1}
                v4 REAL ::= {mantissa 5, base 10, exponent -1}
                v5 REAL ::= 0
                v6 REAL ::= {mantissa 0, base 2, exponent 100}
                v7 REAL ::= {mantissa 0, base 10, exponent 100}

Notice that apart from v5, these are all comma-separated lists of three numbers.  (Comma-
separated lists occur frequently in ASN.1 value notation and were chosen for type REAL because
an ASN.1 tool may encounter the value notation when the governor is a type-reference name that
has not yet been defined, and the tool needs a simple means of finding the end of the notation).
The mathematical value being identified by {x, y, z} is (x times (y to the power z)), but y is
allowed to take only the values 2 and 10.

There are also explicitly included (and encoded specially) two values with the following value
notation:

        PLUS-INFINITY
        MINUS-INFINITY

Again, all upper-case letters.  When "REAL" was first introduced, there was discussion of adding
additional special "values" such as "OVERFLOW", or even "PI" etc, but this never happened.

That is really all you need to know, as the "REAL" type is infrequently used in actual application
specifications.  The rest of the discussion of the "REAL" type is a bit academic, and you can omit
it without any “real” damage to your health!  But if you want to know which of v1 to v7 represent
the same abstract value and which different ones, read on!

You might expect from the name that the abstract values are (mathematical) real numbers, but for
those of a mathematical bent, only the rationals are included.

Formally, the type contains two sets of abstract values, one set comprising all the numbers with a
finite representation using base 10, and the other set comprising all the numbers with a finite
representation base 2.  (Notice that from a purely mathematical point of view, the latter values are
a strict subset of the former, but the former contains values that are not in the latter set).  In all
ASN.1 encoding rules, there are binary encodings for "REAL", and there are also decimal
encodings as specified in the ISO standard ISO 6093.  This standard specifies a character string to
represent the value, which is then encoded using ASCII.  An example of these encodings is:

RealReal

Two sets of abstract values, Base 10 and Base 2,Two sets of abstract values, Base 10 and Base 2,
distinct even if mathematically equal.  The valuedistinct even if mathematically equal.  The value
notation is a comma-separated list of integers for thenotation is a comma-separated list of integers for the
mantissa, the base (2 or 10), and the exponent.mantissa, the base (2 or 10), and the exponent.
Also PLUS-INFINITY and MINUS-Also PLUS-INFINITY and MINUS-
INFINITY.INFINITY.
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        56.5E+3

but ISO 6093 contains many options!

It is possible (post-1994) to restrict the set of abstract values in "REAL" to be only the base 10 or
only the base 2 set, effectively giving the application designer control over whether the binary or
the decimal encoding is to be used.  Where the type is unrestricted, it is theoretically possible to
put different application semantics on a base 10 value from that on the mathematically-equal base
2 value, but probably no-one would be daft enough!  (Actually, "REAL" is not used much anyway
in real protocols).

But just to wrap this discussion up ... looking at the values v1 to v7 above, we can observe that the
value-reference-names listed on the same line below are value notation for the same abstract value,
and those on different lines are names for different abstract values:

          v1, v2
          v3
          v4
          v5, v6
          v7

(V5 equals V6 because V5 is defined to represent the base2 value zero.)

2.5  The BIT STRING type

(See "version" in figure 22).   There are two main
uses of the bitstring type.  The first is that given for
"version", where we have a list of named bits
associated with the type.  The second and simplest is
the type-notation:

                BIT STRING

Note that, as we would expect, this is all upper-case, but as we might not expect, the name of the
type (effectively a type-reference-name) contains a space!  The space is not merely permitted, it is
required!  Again ASN.1 breaks its own rules!

We will return to figure 22 in a moment.  Let us take the simpler case where there is no list of
named bits.

If a field of a sequence (say) is defined as simply "BIT STRING", then this can be a sign of an
inadequately-specified protocol, as semantics need to be applied to any field in a protocol.  "BIT
STRING" with no further explanation is one of several ways in which "holes" can legally be left in
ASN.1 specifications, but to the detriment of the specification as a whole.

We will see later that where any "hole" is left, it is important to provide fields that will clearly
identify the content of the hole in an instance of communication, and to either ensure that all
communicating partners will understand all identifications (and the resulting contents of the hole),
or will know what action to take on an unknown identifier.  ASN.1 makes provision for such
"holes" and the associated identification, and it is not a good idea to use "BIT STRING" to grow
your own "holes" (but some people do)!

BIT STRING is often used withBIT STRING is often used with
named bitsnamed bits to support a bit-map for to support a bit-map for
version negotiation.version negotiation.
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So ... BIT STRING without named bits has a
legitimate use to carry encodings produced by well-
identified algorithms, and in particular to carry
encryptions for either concealment or signature
purposes.  But even in this case, there is usually a
need to clearly identify the security algorithm to be
applied, and perhaps to indirectly reference specific keys that are in use.  The BIT STRING data
type is (legitimately) an important building block for those providing security enhancements to
protocols, but further data is usually carried with it.

The use of BIT STRING with named bits as for "version" in figure 13 is common.  The names in
curly brackets simply provide names for the bits of the bit-string and the associated bit-number.  It
is important to note that the presence of a named bit list (as with distinguished values for integers),
does not affect the type.  The list in no way constrains the possible length of the bit-string, nor do
bits have to be named in order.

ASN.1 talks about "the leading bit" as "bit zero", down to the "trailing bit".  Encoding rules map
the "leading bit" to the "trailing bit" of a bit-string type into octets when encoding.

(BER - arbitrarily, it could have chosen the opposite rule - specifies that the leading bit be placed
in the most significant bit of the first octet of the encoding, and so on.)

How are these names of bits used?  As usual, they can provide a handle for reference to specific
bits by the human-readable text.  They can also, however, be used in the value notation.

The obvious (and simplest) value notation for a bitstring is to specify the value in binary, for
example:

                '101100110001'B

If the value is a multiple of four bits, it is also permissible to use hexadecimal:

                 'B31'H

(Note that in ASN.1 hexadecimal notation, only upper case letters are allowed.)

If, however, there are named bits available, then an additional value notation is available which is
a comma-separated list of bit-names within curly brackets (see, for example, the “DEFAULT”
value of “version” in figure 22).  The value being defined is one in which the bit for every listed
bit-name is set to one, and all other bits are set to zero.

The alert reader (I have done it again!) will spot that this statement is not sufficient to define a bit-
string value, as it leaves undetermined how many (if any) trailing zero bits are present in the value.
So the use of such a "value-notation" if the length of the bitstring is not constrained does not really
define a value at all - it defines a set of values!  All those with the same one bits, but zero to
infinity trailing zero bits!

The ASN.1 specifications post around 1986 get round this problem with some weasel words
(slightly changed in different versions):  "If a named bit list is present, trailing zero bits shall have
no semantic significance";  augmented later by "encoding rules are free to add (or remove) trailing
zero bits to (or from) values that are being encoded"!

BIT STRING without named bits isBIT STRING without named bits is
also frequently used as part or aalso frequently used as part or a
more complex structure to carrymore complex structure to carry
encrypted information.encrypted information.
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This issue is not a big one for normal BER, where it does not matter if there is doubt over whether
some value exactly matches the "DEFAULT" value, but it matters rather more in the canonical
encoding rules described later.

The most common use for named bits is as a "version" map, as illustrated in figure 13.  Here an
implementation would be instructed to set the bits corresponding to the versions that it is capable
of supporting, and - typically - there would be some reply message in which the receiver would set
precisely one bit (one of those set in the original message), or would send some sort of rejection
message.

Formal/advanced discussion

NOTE — Most readers should skip this next bit!  Go on to OCTET STRING, that has fewer problems!  If
you insist on reading on, please read figure 999 again!

There have been many different texts in the ASN.1 specifications over the last 15 years associated
with “BIT STRING” definitions with named bits.  Most have been constrained by the desire:

a)  not to really change what was being specified, or at least, not to break current
deployed implementations;  and

b)  not to add a large amount of text that
would seem to imply a) above even if it didn't
really do it!

The result is that you as an alert and intelligent
reader(!) may well be able to take issue with what
follows, depending on the vintage of the specification
that you are reading, and/or on whether people insist
on calling you an "ASN.1 Expert"!

The ASN.1 Standard seems to imply that the presence of a named bit list (and the extent of such a
list) has no impact on the set of abstract values in the type being defined.  However, abstract
values are there to enable application designers to associate different application semantics with
them, with the assurance that each value will have a distinct encoding, and with the equal
assurance that for canonical encodings there will be precisely one encoding for each value.

(Controversial remark follows!) The specification states that "application designers should ensure
that different (application) semantics are not associated with ... values (of types with named bits)
which differ only in the number of trailing zero bits".  What this is actually saying is that such
apparently distinct abstract values are actually a single abstract value.

The only remaining issue is how such abstract bitstring values should be represented by encoding
rules.   The standard gives guidance: "encoding rules are free to add (or remove) arbitrarily many
trailing zero bits to (or from) values that are being encoded or decoded".  Perhaps not the best way
of expressing it, but the principles are clear:

• when a named bit list is present, we have just one abstract value corresponding to different
bit-patterns that differ only in the number of their trailing zero bits;

• encoding rules are (of course!) free to represent this abstract value how they like, but one
option is to encode any one of those bit-patterns that differ only in their trailing zero bits.

BIT STRING with named bitsBIT STRING with named bits
raises interesting issues about whatraises interesting issues about what
is the precise set of abstract valuesis the precise set of abstract values
of such a type:of such a type:

IGNORE SUCH QUESTIONS,IGNORE SUCH QUESTIONS,
they don't matter!they don't matter!
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For BER, which does not claim to provide a single encoding for each abstract value, the rules
permit arbitrarily many trailing zero bits in the encoding.  (The decision to allow this was
necessary to avoid breaking existing implementations when this rather abstract(!) problem was
first understood.)  Existing BER implementations will frequently include trailing zero bits in the
encoding of a value of a bitstring type with a named-bit list.

For canonical encoding rules, however, including PER, a single encoding is necessary, and at first
sight saying that such encoding rules never have trailing bits in the encoding looks like a good
solution.

But the choice of encoding (and indeed the selection of the precise abstract bitstring value - from
the set of abstract values with the same semantics - that is to be used for encoding) is complicated
if there are length constraints at the abstract level on the bitstring type.

The matter is further complicated because in BER-related encoding rules, length constraints are
"not visible" - do not affect the encoding!  In PER, they may or may not be visible!

The up-shot of all this is that in the canonical versions of BER trailing zero bits are never
transmitted in an encoding, but the value delivered to the application is required to have
sufficient zero bits added (the minimum necessary) to enable it to satisfy any length constraints
that might have been applied.  (Such constraints are assumed to be visible to the application and to
the Application Program Interface -API- code, whether they are visible to - affect - the encoding
rules or not.)

PER, where (some) length constraints are PER-visible, changes this slightly:  what is transmitted
is always consistent with PER-visible constraints - so (the minimum number of) trailing zero bits
are present in transfer if they are needed to satisfy a length constraint.  The encoding can thus be
delivered to the application unchanged, provided there are no not-PER-visible constraints applied,
otherwise the canonical BER rules would apply - the application gets a value that is permitted by
the constraints and carries the same application semantics as that derived directly from the
transmitted encoding.

And if you have read this far, I bet you wish you hadn't!  It kind of all works, but it is not simple!

Issues like this do not affect the normal application designer - just do the obvious things and it will
all work, nor do they affect the normal implementor that obeys the well-known rules:  encode the
obvious encoding;  be liberal in your decoding.

These issues are, however, of importance to tool vendors that provide an option for "strict
diagnostics" if incoming material is perceived to be erroneous.  In such cases a very precise
statement of what is "erroneous" is required!

2.6  The OCTET STRING type

 (See "bar-code-data" in figure 22).  Once again, a
space is needed between "OCTET" and "STRING"!
And once again, an octetstring is a tempting
candidate to "carry anything" - a delimited hole.
(But don't be tempted!)  Yet again, it is not
appropriate unless supported by identification fields
and exception handling.  ASN.1 provides better

The OCTET STRING type is simpleThe OCTET STRING type is simple
- but don't use it!  It usually- but don't use it!  It usually
represents a poorly-supported "hole",represents a poorly-supported "hole",
and it is better to use a pre-fabricatedand it is better to use a pre-fabricated
"hole" - see later"hole" - see later!
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mechanisms to support "holes".

In the case shown in figure 22, the precise contents of the octet string are (hopefully!) well-
specified in “chapter 29 of the wineco manual”.  However, this specification is not very general.
The intent is clearly to provide a container for additional identification information, using some
encoding outside of ASN.1.  In general, and over time, there may be a number of different
encodings of various forms of identification that the designer may wish to carry in this octetstring,
and again we see the need for additional identification fields saying "this is a bar-code version 1" -
or something else, and "this is how it is encoded today", rather than hard-wiring these decisions
into "chapter 29".  Once again, we see we are discussing "holes".

In summary (but see Figure 999 again!) it is probably a BAD THING to have OCTET STRING or
BIT STRING (other than for version bit-maps) fields in application specifications unless you
really know what you are doing and really want to "dig your own hole".  But of course, perhaps
you do!

The value notation for OCTET STRING is always hexadecimal or binary as illustrated earlier for
bitstring.  If the result is not an integral multiple of eight bits, then zero bits are added at the end.

2.7  The NULL type

(See "warehouse" in figure 13).  Formally, NULL is a
type that has just one value.  The value-notation for
this value is rather confusingly:

                                NULL

again, all upper-case,  where one might expect an initial lower-case letter.

The normal use is very much as in figure 13 - where we need a type to provide a TLV (whose
presence or absence carries some semantics), but where there is no additional information to be
carried with the type.  NULL is often referred to as a "place-holder" in ASN.1 courses.

2.8  Some character string types

(See "additional-information" in figure 22 and "name" (twice) in figure 13).  In the examples so
far, you have met "PrintableString" (present in the earliest ASN.1 drafts), "VisibleString"
(deprecated synonym "ISO646String"), and "UTF8String" (added in 1998).   There are several
others.

Despite not being all-upper-case, these (and the other character string type names) have been
reserved words (names you may not use for your own types) since about 1988/90.   The early
designers of ASN.1 felt (rightly!) that the character string types and their names were a bit "ad
hoc", and gave them a somewhat reduced status!

Actually, in the earliest ASN.1 specification, there was the concept of "Useful Types", that is,
types that were defined using the ASN.1 notation rather than pure human-language, and these all
used mixed upper/lower-case.  The character string types were originally included as "Useful
types", and were defined as a tagged OCTET STRING.  Today (since about 1990 when they
became reserved words) they are regarded as fairly fundamental types with a status more-or-less
equal to that of INTEGER or BOOLEAN.

For NULL, you know it all - aFor NULL, you know it all - a
place-holder:  no problems.place-holder:  no problems.
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The set of characters in "PrintableString" values is "hard-wired" into ASN.1, and is roughly the
old telex character set, plus lower-case letters.  The BER encoding in the "V" part of the TLV is
the ASCII encoding, so the reduced character set over "VisibleString" (following) is not really
useful, although a number of application specifications do use "PrintableString".

The set of characters in "VisibleString" values is simply the printing ASCII characters plus
"space".   The BER encoding in the "V" part of the TLV is, of course, ASCII.

The set of characters in "UTF8String" is any character - from Egyptian hieroglyphs to things
carved in wood in the deepest Amazon jungle to things that we will in due course find on Mars -
that has been properly researched and documented (including the ASCII control characters).  The
BER (and PER if the type is not constrained to a reduced character set) encoding per character is
variable length, and has the "nice" property that for ASCII characters the encoding per character is
one octet, stretching to three octets for all characters researched and documented so far, and going
to at most six octets per character once we have all the languages of the galaxy in there!  Those
who are "into" character set stuff may recognise the name "Unicode".   UTF8 is an encoding
scheme covering the whole of Unicode (and more) that is becoming (circa 1999) extremely popular
for communication and storage of character information.  Advice:  If you are designing a new
protocol, use UTF8String for your character string fields unless you have a very good reason not
to do so.

2.9  The OBJECT IDENTIFIER type

(See "item" and "wineco-items" in figure 22, and
module identifiers in figure 21.)  Values of the object
identifier type have been used and introduced from the
start of this book.  But we are still going to postpone to
a later chapter a detailed discussion of this type!

The OBJECT IDENTIFIER type may well lay claim to
being the most used of all the ASN.1 types (excluding the constructors SEQUENCE, SET, and
CHOICE, of course).  Wherever world-wide unambiguous identification is needed in an ASN.1-
based specification, the object identifier type is used.

Despite the apparent verbosity of the value-notation, the encoding of values of type object
identifier is actually very compact (the human-readable names present in the value notation do not
appear in the encoding).  For the early components of an object identifier value, the mapping of
names to integer values is "well-known", and for later components in any value-notation, the
corresponding integer value is present (usually in round brackets).

The basic name-space is a hierarchically allocated tree-structure, with global authorities
responsible for allocation of top-level arcs, and progressively more local authorities responsible for
the lower-level arcs.

For you (as an application designer) to be able to allocate values from the object identifier name
space, you merely need to "get hung" from this tree.  It really doesn't matter where you are "hung"
from (although encodings of your values will be shorter the nearer you are to the top, and
international organizations tend to be sensitive about where they are "hung"!).

For a standards-making group, or a private company, or even an individual, there are a range of
mechanisms for getting some of this name-space, most of which require no administrative effort
(you probably have an allocation already!).  These mechanisms are described later, although such

OBJECT IDENTIFIER -OBJECT IDENTIFIER -
perhaps more used than any otherperhaps more used than any other
basic ASN.1 type - you can getbasic ASN.1 type - you can get
some name-space in lots of ways,some name-space in lots of ways,
but you don't really need it!but you don't really need it!
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is the proliferation of branches of the OID tree (as it is often described) that it is hard to describe
all the finer parts!

It has been a criticism of ASN.1 that you need to get some OID space to be able to authoritatively
write ASN.1 modules.  This is actually not true - the module identifier is not required.  However,
most people producing ASN.1 modules do (successfully) try to get a piece of the OID space and
do identify their modules with OID values.  But if this provides you with problems, it is not a
requirement.

2.10  The ObjectDescriptor type

(See "item-description" in figure 22).  The type-
notation for the ObjectDescriptor type is:

        ObjectDescriptor

without a space, and using mixed upper and
lower case!  This is largely a historical accident.
This type was formally-defined as a tagged
"GraphicString" (another character string type capable of carrying most of the world's languages,
but regarded as obsolete today).  Because its definition was by an ASN.1 type-assignment
statement, it was deemed originally to be merely a "Useful Type", and was given a mixed
upper/lower-case name with no space.  Today, the term "Useful Type" is not used in the ASN.1
specification, and the use of mixed case for this built-in type is a bit of an anachronism.

The existence of the type stems from arguments over the form of the OBJECT IDENTIFIER type.
There were those who (successfully) argued for an identification mechanism that produced short,
numerical, identifiers when encoded on the line.  There were others who argued (unsuccessfully)
for an identification mechanism that was "human-friendly", and contained a lot of text (for
example, something like a simple ASCII encoding of the value notation we have met earlier), and
perhaps no numbers.  As the debate developed, a sort of compromise was reached which involved
the introduction of the "OBJECT IDENTIFIER" type - short, numerical, guaranteed to be world-
wide unambiguous, but supplemented by an additional type "ObjectDescriptor" that provided an
indefinitely long (but usually around 80 characters) string of characters plus space to "describe" an
object.  The "ObjectDescriptor" value is not in any way guaranteed to be world-wide unambiguous
(the string is arbitrarily chosen by each designer wishing to describe an object), but because of the
length of the string, usually it is unambiguous.

There is a strong recommendation in the ASN.1 specification that whenever an object identifier
value is allocated to identify an object, an object descriptor value should also be allocated to
describe it.  It is then left for application designers to include in their protocol (when referring to
some object) either an "OBJECT IDENTIFIER" element only, or both an "OBJECT
IDENTIFIER" and an "ObjectDescriptor", perhaps making the inclusion of the latter
"OPTIONAL".

In practice (apart from the artificial example of figure 22!) you will never encounter an
"ObjectDescriptor" in an application specification!  Designers have chosen not to use it.
Moreover, the rule that whenever an object identifier value is allocated for some object, there
should also be an object descriptor value assigned, is frequently broken.

Take the most visible use of object identifier values - in the header of an ASN.1 module:  what is
the corresponding object descriptor value?  It is not explicitly stated, but most people would say

ObjectDescriptorObjectDescriptor

Yes, mixed case!  You will never see it inYes, mixed case!  You will never see it in
a specification, and you are unlikely toa specification, and you are unlikely to
want to use it - ignore this text!want to use it - ignore this text!
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that the module name appearing immediately before the object identifier in the header forms the
corresponding object descriptor.  Well - OK!

But there are other object identifier values originally assigned in the ASN.1 specification itself,
such as:

        {iso standard 8571}

This identifies the numbered standard (which is actually a multi-part standard), and also gives
object identifier name-space to those responsible for that standard.  There is, however, no
corresponding object descriptor value assigned!

2.11  The two ASN.1 date/time types

Yes, you did indeed interpret figure 22 correctly -
UTCTime is a date/time type that carries only a two-
digit year!

You will also notice that both "UTCTime" and
"GeneralizedTime" are again mixed upper/lower-
case.  Again this is a historical accident:  they were defined using an ASN.1 type-assignment
statement as a tagged "VisibleString", and were originally listed as "Useful Types".

Why both?  Was GeneralizedTime added later?  Yes and no!  In the early drafts in 1982, UTCTime
was all that was present, and contained the specification of the character string to be used to
represent dates and times "hard-wired" into the ASN.1 specification:  that is to say, the complete
text defining this type was present in the ASN.1 specification.

GeneralizedTime was added before the first ASN.1 specification was published in 1984, but did
not contain the full specification - it referred to what was then a new ISO Standard (ISO 8601).
However, early users of ASN.1 were already finalising their texts based on use of UTCTime, and
it was left in the ASN.1 specification.  The fact that UTCTime only used a two digit year and
GeneralizedTime a four-digit year was not even a subject of discussion in 1982!  (The other
difference between the two types was in the precision of the time - at best a precision of a second
for UTCTime, more for GeneralizedTime).

Slightly less forgivable was the Directory work, which was not published until 1988, but also used
UTCTime!  It is possible that the attraction of a "hard-wired" specification - you don't need to seek
out another publication in order to see what you are getting - was an influence in encouraging
designers to use UTCTime (rather than GeneralizedTime) during the 1980s.

The comment in figure 22 about interpreting a UTCTime value as a "sliding window" is one of
three varying recommendations often made for two-digit year fields:

• (DEFAULT in the past).  Interpret as a year between 1900 and 1999 - the default setting,
and certainly the intent in 1982, but a bad idea today!

• (SIMPLE proposal for now).  Interpret as a year between 1950 and 2049 - simple, and it
buys us another 50 years!

• (SLIDING WINDOW - works forever!).  Interpret any 2-digit year that matches the
bottom two digits of the current year as the current year.  Interpret all other values as years
within a window from the current year minus fifty years to the current year plus 49 years

UTCTime and GeneralizedTimeUTCTime and GeneralizedTime

Simple in concept, easy to use, but notSimple in concept, easy to use, but not
without their problems!without their problems!
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(or minus 49 to plus 50 - a matter of choice - but it should be clearly defined).  This means
that on the 31 December each year, the interpretation of dates fifty years in the past
changes to an interpretation as a date fifty years in the future.  If there never are dates in
your system that are fifty years in the past (and no need to refer to any that are more than
forty-nine years in the future), this system clearly works, and allows two-digit years to be
used indefinitely.  A neat solution!

What does "UTC" stand for?  It comes from the CCIR (Consultative Committee on International
Radio), and stands for "Co-ordinated Universal Time" (the curious order of the initials comes from
the name in other languages).  In fact, despite the different name, "GeneralizedTime" also records
Co-ordinated Universal Time.  What is this time standard?   Basically, it is Greenwich Mean Time,
but for strict accuracy, Greenwich Mean Time is based on the stars and there is a separate time
standard based on an atomic clock in Paris.  Co-ordinated Universal Time has individual "ticks"
based on the atomic clock,  but from time-to-time it inserts a "leap-second" at the end of a year (or
at the end of June),  or removes a second,  to ensure that time on a global basis remains aligned
with the earth's position round the sun.  This is, however, unlikely to affect any ASN.1 protocol!

What is the exact set of values of UTCTime?  The values of the type are character strings of the
following form:

                yymmddhhmmZ
                yymmddhhmmssZ
                yymmddhhmm+hhmm
                yymmddhhmm-hhmm
                yymmddhhmmss+hhmm
                yymmddhhmmss-hhmm

"yymmdd" is year (00 to 99), month (01 to 12), day (01 to 31), and "hhmmss" is hours (00 to 23),
minutes (00 to 59), seconds (00 to 59).

The "Z" is a commonly-used suffix on time values to indicate "Greenwich Mean Time" (or UTC
time), others being "A" for one hour ahead, "Y" for one hour behind, etc, but these are NOT used
in ASN.1.

If the "+hhmm" or "-hhmm" forms are used (called a time differential), then the first part of the
value expresses local time, with UTC time obtained by subtracting the "hhmm" for "+hhmm", and
adding it for "-hhmm".  The ASN.1 specification contains the following example (another
example, added in 1994 shows a "yy" of "01" representing 2001!):

If local time is 7am on 2 January 1982 and co-ordinated universal time
is 12 noon on 2 January 1982, the value of UTCTime is either of

        "8201021200Z"
or
        "8201020700-0500".

GeneralizedTime is the same overall format, but has a four-digit year, and allows "any of the
precisions specified in ISO 8601".

GeneralizedTime is not without its problems, however.  ISO Standards undergo revision from time
to time, and referencing them from within another specification can allow things to change under
your feet!  It became clear in the mid-1990s that many people had implemented GeneralizedTime
assuming that the maximum available precision for seconds was three digits after the decimal point
(a milli-second).  On closer inspection of ISO 8601 (current version), it is clear that unlimited
precision is permitted - there is no restriction on the number of digits after the decimal point.  It
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was an uncompleted homework task for the author to try to find earlier versions (and in particular
the version current in 1982!) of ISO 8601 to determine for how long an arbitrary precision had
been permitted.  Perhaps a reviewer will undertake the research?  Otherwise it is left as another
small exercise for the reader!

Another issue arising with both UTCTime and GeneralizedTime relates to canonical encodings:
should the different precisions be regarded as different encodings for the same abstract value (a
given time) where trailing zeros are present ("8202021200Z" v "820202120000Z"), or as different
abstract values (because precision is a part of the abstract information conveyed)?  A similar
question occurs with the time differential.  It actually doesn't matter much which approach is
taken, so long as those using canonical encoding rules know the answer.  The current text says that
the precision and time differential are different ways of encoding a time (a single abstract value),
and that in canonical encoding rules, the time differential shall not be present (and the "Z" shall),
and that there shall be no trailing zeros in the precision, so the example "8202022120000Z" is not
legal in the canonical encoding rules.  This is another area where arguments can continue over the
precise set of abstract values of this type.

3  Additional notational constructs

3.1  The selection-type notation

There is no example in figure 22!  I have only seen
"selection types" used in one application specification.
They are not common!

The ASN.1 specification talks about "The selection
type", but the heading in this clause is more accurate -
this is a piece of notation more akin to "IMPORTS" than to a type definition:  it references an
existing definition.

The selection-type notation takes the following form:

       identifier-of-a-choice-alternative < Type-notation-for-a-CHOICE

For example, given:

                Example-choice ::= CHOICE
                  {alt1    Type1,
                   alt2    Type2,
                   alt3    Type3}

Then the following type-notation can be used wherever type-notation is required within the scope
(module) in which "Example-choice" is available:

                alt1 < Example-choice
or              alt2 < Example-choice
or              alt3 < Example-choice

This notation references the type defined as the named alternative of the identified choice type, and
should be seen as another form of type-reference-name.  Notice that if the selection-type notation is
in a module different from that in which "Example-choice" was originally defined, any tagging or

The SELECTION TYPE notationThe SELECTION TYPE notation
- you are unlikely ever to see this -- you are unlikely ever to see this -
forget it!forget it!
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extensibility environment applied to the referenced type is that of the module containing the
original definition of Example-choice, not that of the selection-type notation.

Value notation for "a selection type" is just the value notation for the selected type.

In other words, for the type-notation "alt3 < Example-choice", the value-notation is the value-
notation for "Type3". (The identifier "alt3" does not appear in the value-notation for the "selection
type", nor are there any colons present.)

3.2  The COMPONENTS OF notation

This is another example of a rarely-used piece of
notation that references the inner part of a
sequence or set.  The only reason to use it is that
you can avoid an extra TLV wrapper in BER!  It
is again not illustrated in figure 22!

 What follows is described in relation to "SEQUENCE", but applies equally to "SET".  However, a
"COMPONENTS OF" in a "SEQUENCE" must be followed by type-notation for a sequence-type
(which remember may, and usually will, be a type-reference-name), and similarly for SET.

Suppose we have a collection of elements (identifiers and type-notation) that we want to include in
quite a few of the sequence types in our application specification.  Clearly we do not want to write
them out several times, for all the obvious reasons.  We could, of course, define a type:

        Common-elements ::= SEQUENCE
            {element1   Type1,
             element2   Type2,
             ....
             element23   Type23}

and include that type as the first (or last) element of each of our "actual" sequences:

          First-actual-sequence ::=  SEQUENCE
             {used-by-all  Common-elements,
              next-element Some-special-type,
              next-again   Special2,
              etc          The-last}

We do the same for all the sequences we need these common elements in.  That is fine.  (And with
PER it really is fine!)  But with BER, if you recall the way BER works, we get an outer-level TLV
for "First-actual-sequence", and in the "V" part a TLV for each of its elements, and in particular a
TLV for the "used-by-all" element.  Within the "V" part of that we get the TLVs for the elements of
"Common-elements".  But if we had copied - textually - the body of "Common-elements" into
"First-actual-sequence", there would be no TLV for "Common-elements" - we would have saved
(with BER) two or three - perhaps four! - octets!

If we use "COMPONENTS OF", we can write:

          First-actual-sequence ::=  SEQUENCE
             {             COMPONENTS OF Common-elements,
              next-element Some-special-type,
              next-again   Special2,
              etc          The-last}

The COMPONENTS OF notation -The COMPONENTS OF notation -
you won't often see this either, so forgetyou won't often see this either, so forget
this too!this too!
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The "COMPONENTS OF" notation provides for such copying without textually copying - it
"unwraps" the sequence type it references.

Note that there is no identifier on the "COMPONENTS OF element". This is not optional - the
"identifier" must be omitted.  The "COMPONENTS OF is not really an element of the
SEQUENCE - it is a piece of notation that extracts or unwraps the elements. It is often referred to
as "textual substitution", but that is not quite correct (alert reader!) because the tagging and
extensibility environment for the extracted elements remains that of the module where they were
originally defined.

There is some complexity if automatic tagging is applied and COMPONENTS OF is used.  The
reader has two choices:  just forget it and note that it all works (unless you are a hand-coding
implementor, in which case see the next option!), or as a good exercise (none are formally set in
this book!) go to the ASN.1 specification and work out the answer!

3.3  SEQUENCE or SET?

The type-notation for SEQUENCE, SET,
SEQUENCE OF and SET OF has been well-
illustrated in earlier text and examples,
together with the use of "DEFAULT" and
"OPTIONAL".  Remember that in BER (not
CER/DER/PER), the default value is
essentially advisory.  An encoder is permitted to encode explicitly a default value, or to omit the
corresponding TLV, entirely as an encoders option.

We have already discussed briefly the differences between

        SEQUENCE { .... }   and   SET { .... }

from an encoding point of view in BER (the TLVs are in textual order for SEQUENCE, in an
order chosen by the encoder for SET), and also from the more theoretical stand-point that "order is
not semantically significant" in SET.

The problem is that if we regard the abstract value as a collection of unordered information, and
we want a single bit-pattern to represent that in an encoding, we have to invent some more-or-less
arbitrary criteria to order the collection in order to form a single bit-pattern encoding!  This can
make for expensive (in CPU and perhaps also in memory terms) encoding rules.  In the case of
SET { .... }, if we want to remove encoders options, it is possible to use either textual order (not
really a good idea) or tag order (tags are required to be distinct among the elements in a SET) to
provide the ordering as a static decision.  However, in the case of "SET OF", no-one has found a
way of providing a single bit-pattern for a complete set-of value without doing a run-time sort of
the encodings of each element!  This can be expensive!

We will return to this point when we discuss the canonical (CER) and distinguished (DER)
encoding rules in Section III, but advice today (but see figure 999!) would be: Best to keep off
"SET {", and avoid "SET OF" like the plague!

One very small detail to mention here:  the default tag provided for "SET {" and for "SET OF" is
the same.   It is different from that provided for "SEQUENCE {" and for "SEQUENCE OF", but
these are also the same.  This only matters if you are carefully applying tags within CHOICEs and
SETs etc with the minimal application of tags.  In this case you will have studied and be happy
with later text on tagging, and will carefully check the ASN.1 specification to determine the

An application designer can generally chooseAn application designer can generally choose
to use SEQUENCE or SET more or lessto use SEQUENCE or SET more or less
arbitrarily.  Read this text then usearbitrarily.  Read this text then use
SEQUENCE always!SEQUENCE always!
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default tag for all types!  If you are a normal mortal, however, you will routinely apply tags to
everything (pre-1994), or will use "AUTOMATIC TAGS" (post-1994), and the fact that the default
tag for "SEQUENCE {" is the same as that for "SEQUENCE OF" will not worry you in either
case!

3.4  SEQUENCE, SET, and CHOICE (etc) value-notation

We have used the type notation for these
constructions almost from the first page of this
book, but now we need to look at their value-
notation.  (Actually, you will never encounter this
except in courses or an illustrative annex to the
ASN.1 specification, but it reinforces the point
that for any type you can define with ASN.1
there is a well-defined notation for all of its
values.)

To say it simply:  value notation for "SET {" and
"SEQUENCE {" is a pair of curly braces containing a comma-separated list.  Each item in the list
is the identifier for an element of the "SEQUENCE {" (taken in order) or "SET {" (in any order),
followed by value-notation for a value of that element.  Of course this rule is recursively applied if
there are nested "SEQUENCE {" constructs.

For "SET OF" and "SEQUENCE OF" we again get a pair of curly braces containing a comma-
separated list, with each item being the value notation for a value of the type-notation following
the "OF".

SEQUENCE, SET, CHOICE,SEQUENCE, SET, CHOICE,
etc value-notationetc value-notation

You won't ever need to write it, and willYou won't ever need to write it, and will
only ever read it in courses and ASN.1only ever read it in courses and ASN.1
tutorials and silly books like this, buttutorials and silly books like this, but
here it is. It is good to complete yourhere it is. It is good to complete your
education!education!

todays-return Return-of-sales ::=
     {version                {version2},
      no-of-days-reported-on   8,
      time-and-date-of-report
                 two-digit-year:"9901022359Z",
      reason-for-delay  {network-failure},
           -- additional-information not included
      sales-data
          {--Report-item 1:
           {item                 {wineco-items  special-tiop (112)},
           item-description     "Special Reserve Purchase Tio Pepe",
            -- A newly-stocked item.
           bar-code-data        'A0B98764934174CDF'H,
            -- ran-out-of-stock is defaulted to FALSE.
           min-stock-level      {mantissa 2056, base 10, exponent -2},
           max-stock-level      {mantissa 100, base 10, exponent 0},
           average-stock-level  {mantissa 7025, base 10, exponent -2} }  ,
           --Report-item 2:
           {item                 {wineco-items own-dry-sherry (19)},
            bar-code-data        'A0B897632910DFE974'H,
            ran-out-of-stock     TRUE,
            min-stock-level      {mantissa 0, base 10, exponent 1},
            max-stock-level      {mantissa 105, base 10, exponent 0},
            average-stock-level  {mantissa 5032, base 10, exponent -2}  }
       --Only two report items in this illustration
                                               }    }

Figure 23:  A value for "return-of-sales"
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Finally, for "CHOICE", it is NOT what you might expect - no curly braces!  Instead you get the
identifier of one of the alternatives, then a colon (:), then value notation for a value of that
alternative.  There is no value notation for any occurrence of tags, nor for extensibility markers or
exception specifications.  The colon in choice values was not present pre-1994.

This should be sufficient for the reader to work through figure 23, which is cast as "todays-return"
a (random) value for the type "Return-of-sales" given in figure 22.

4  What else is in X.680/ISO 8824-1?

This chapter has attempted to cover "Basic ASN.1" - the material present in the first of the four
documents specifying the ASN.1 notation, and in common use in specifications today.  There is,
however, some additional material in this first of the ASN.1 documents that has been deferred to
later chapters.  For completeness of this chapter, this is briefly mentioned below.

The additional areas are:

• Extensibility and version brackets:  This is a big subject, touched on briefly already, and
first introduced in 1994.  (Exception specifications are a related subject, but don't appear
in X.680 - they are in X.682 - and are also treated later.)

• Tagging:  Touched on briefly already.  This was important in the past, but with the
introduction of automatic tagging in 1994 is much less important now.

• The object identifier type:  This was fully-covered in X.680/ISO 8824-1 pre-1998, but
parts of the material are now split off into another Recommendation/Standard.  Previous
chapters of this book produced a lot of introductory material, but the discussion remains
incomplete!

• Hole types: This term is used for the more formal ASN.1 terms EXTERNAL,
EMBEDDED PDV, CHARACTER STRING, and "Open Types" (post-1994).  And dare
we mention ANY and ANY DEFINED BY (pre-1994)?  If you have never heard of ANY
or ANY DEFINED BY, that is a good thing.  But you will have to be sullied by later text -
sorry!

• The character string types:  There are about a dozen different types for carrying strings
of characters from various world-wide character sets.  So far we have met PrintableString,
VisibleString, GraphicString, and UTF8String, and discussed them briefly.  There is a lot
more to say!

• Sub-typing, or constrained types:  This is a big area, with treatment split between
X.680/ISO 8824-1 and X.682/ISO 8824-3.  We have already seen an example of it with
the range constraint "(1..56)" on "no-of-days-reported-on" in figure 22.  This form is the
one you will most commonly encounter or want to use, but there are many other powerful
notations available if you have need of them.

• Macros:  We have to end this chapter on an obscenity!  Some reviewers said, "Don't dirty
the book with this word!"  But macros were very important (and valued) in ASN.1 up to
the late 1980s, and will still be frequently encountered today.  But I hope none of you will
be driven to writing one!  Sections I and II will not tell you much more about macros, but
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the historical material in Section IV discusses their introduction and development over the
life of ASN.1.  It is a fascinating story!

Additionally, there are a number of new concepts and notations that appear in X.681/ISO 8824-2,
X.682/ISO 8824-3, and X.683/ISO 8824-4 (published in 1994).  These are:  information object
classes (including information object definition and information object sets), and parameterization.

Where the above items have already been introduced (in this chapter or earlier), their detailed
treatment is left to a chapter of Section II.   Where they have not yet been discussed, a brief
introduction appears in the following short chapter.
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Chapter 5
Reference to more complex areas

(Or: There is always more to learn!)

Summary:

This chapter provides an introduction to concepts and notation that are treated more fully in
Section II.  Some of these features have been briefly mentioned already, but without a full
treatment.  This includes:

• Object identifiers

• Character string types

• Subtyping

• Tagging

• Extensibility, exceptions, and version brackets

Other topics that are introduced here for the first time are:

• Hole types

• Macros

• Information object classes and objects and object sets

• Other types of constraint

• Parameterization

• The ASN.1 semantic model

An introduction is provided here for the reader who wishes to ignore Section II.  As at mid-
1998, there are no areas or concepts concerned with the ASN.1 notation that have not
been at least introduced by the end of this chapter.

The aim of the text in this chapter is:

• to describe the concept and the problem that is being addressed;

• to illustrate where necessary key aspects of the notational support so that the presence
of these features in a published protocol can be easily recognised; and



100                                                                                                                           © OSS,31 May 1999

• to summarise the additional text available in Section II.

If further detail is needed on a particular topic (if something takes the reader's interest), then
the appropriate chapter in Section II can be consulted.  The Section II chapter provides
"closure" on all items mentioned in this chapter unless otherwise stated.

1  Object identifiers

The OBJECT IDENTIFIER type was briefly
introduced in Chapter 4 (clause 2.9) of this
section, where the broad purpose and use of this
type was explained (with the type notation).
Examples of its value notation have appeared
throughout the text, although these have not
completely illustrated all possible forms of this
value notation.

A more detailed discussion of the form of the
object identifier tree (the name-space) is given in Section 2 (Further Details) Chapter 1, together
with a full treatment of the possible forms of value notation.

Earlier text has given enough for a normal understanding of this type and the ability to read
existing specifications.  It is only if you feel you need some object identifier name space and don't
know how to go about getting some that the "Further Details" material will be useful.  This
material also contains some discussion about the (legal) object identifier value notation that omits
all names and uses numbers only, and about the (contentious) value notation where different names
are associated with components,  depending on where the value is being published and/or the
nature of lower arcs.

2  Character string types

The names of types whose values are strings of
characters from some particular character
repertoire have appeared throughout the earlier
text, and Chapter 4 Clause 2.8 of this section
discussed in some detail the type notations:

                PrintableString
                VisibleString
                ISO646String
                UTF8String

although the treatment introduced terms such as
"Unicode" that may be unfamiliar to some readers.

There has also been little treatment so far of the
value notation for these types, nor has the precise
set of characters in each repertoire been identified
fully.

OBJECT IDENTIFIERs haveOBJECT IDENTIFIERs have
a simple type notation, and aa simple type notation, and a
value notation that has alreadyvalue notation that has already
been seen.  The "Further Details"been seen.  The "Further Details"
chapter tells you about the formchapter tells you about the form
of the name space and how to getof the name space and how to get
some, and provides discussion ofsome, and provides discussion of
the value notation.the value notation.

There are many more character stringThere are many more character string
types than you have met so far, andtypes than you have met so far, and
mechanisms for constructing custommechanisms for constructing custom
types and types where the charactertypes and types where the character
repertoire is not defined until run-repertoire is not defined until run-
time.  The value notation providestime.  The value notation provides
both a simple "quoted string"both a simple "quoted string"
mechanism and a more complexmechanism and a more complex
mechanism to deal with "funny"mechanism to deal with "funny"
characters.characters.
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Section II (Further Details) Chapter 2 provides a full treatment of the value notation and provides
references to the precise definitions of the character repertoires for all character string types.  It
describes the following additional character string types that you will encounter in published
specifications (all the character string types are used in at least one published specification):

                NumericString
                IA5String
                TeletexString
                T61String
                VideotexString
                GraphicString
                GeneralString
                UniversalString
                BMPString
                UTF8String

The simplest value notation for the character string types is simply the actual characters enclosed
in quotation marks (the ASCII character QUOTATION MARK, usually represented as two vertical
lines in the upper quartile of the character glyph).  For example:

                "This is an example character string value"

The (alert - I hope we still have some!) reader will ask four questions:

• How do I express characters appearing in character string values that are not in the
character set repertoire used to publish the ASN.1 specification?  (Publication of ASN.1
specifications as ASCII text is common).

• How do I include the ASCII QUOTATION MARK character (") in a character string
value?

• Can I split long character string values across several lines in a published specification?

• How do I precisely define the white-space characters and control characters in a character
string value?

These are topics addressed in the "Further Details" section.

In summary:

• A QUOTATION MARK character is included by the presence of adjacent quotation marks
(a very common technique in programming languages).

• ASN.1 provides (by reference to character set standards), names for all the characters in
the world (the names of these characters use only ASCII characters), and a value notation
which allows the use of these names.

• Cell references are also available for ISO 646 and for ISO 10646 to provide precise
specification of the different forms of white-space and of control characters appearing in
ASCII.

An example of a more complex piece of character string value notation described in the "Further
Details" section is:

                { nul, {0,0,4,29}, cyrillicCapitalLetterIe, "ABC"}
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go to "Further Details" if you want to know what that represents!

The above provision is, however, not the end of the story.  If UniversalString or BMPString or
UTF8String are used, then ASN.1 has built-in names (again defined by reference to character set
standards) for about 80 so-called "collections" of characters.  Here are the names of some of these
collections:

                BasicLatin
                BasicGreek
                Cyrillic
                Katakana
                IpaExtensions
                MathematicalOperators
                ControlPictures
                Dingbats

Formally, these collections are subsets (subtypes - see the next clause of this chapter) of the
BMPString type, and it is possible to build custom character string types using combinations of
these pre-defined types.

Section II Chapter 2 provides full coverage of these features, but a more detailed discussion of the
form and historical progression of character set standardization has been placed in Section IV
(History and Applications).  Readers interested in gaining a full understanding of this area may
wish to read the relevant chapter in Section IV before reading the Section II chapter.

Finally, ASN.1 also includes the type:

                CHARACTER STRING

which can be included in a SEQUENCE or SET (for example) to denote a field that will contain a
character string, but without (at this stage) determining either the character repertoire or the
encoding.

This is an incomplete specification or "hole", and is covered in Section II Chapter 7.  If this
character string type is used, both the repertoire and the encoding are determined by announcement
(or if the OSI stack is in use, by negotiation) at run-time, but can be constrained by additional
specification using "constraints" (see "Other types of constraint" below), either at primary
specification time, or by "profiles" (additional specifications produced by some group that reduces
options in a base standard).

3  Subtyping

There has been little text on this subject so far.  We
have seen an example of:

          INTEGER (1..56)

to specify an integer type containing only a subset of
the integer values - those in the range from 1 to 56
inclusive.  This is called "simple subtyping" and was
provided in the ASN.1 Specifications from about

From simple subtyping through toFrom simple subtyping through to
relational constraints. ASN.1relational constraints. ASN.1
provides powerful mechanisms forprovides powerful mechanisms for
selecting a subset of the values ofselecting a subset of the values of
an ASN.1 type, and (in PER)an ASN.1 type, and (in PER)
for encoding that selected subset infor encoding that selected subset in
a very efficient manner.a very efficient manner.
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1986 onwards.

Simple subtyping enables a subset of the values of any ASN.1 type to be selected to define a new
type, using a variety of quite powerful mechanisms.  Note that an abstract syntax (the set of
abstract values that can be communicated) for a "Full Class" protocol is normally defined as the
set of values of a single ASN.1 type (see Chapter 1 clauses 2.1, 2.3 and 3, and Chapter 3 clause
4).  If a "Basic Class" protocol is needed, then this can conveniently be defined as a subset of those
values.  The "simple subtyping" mechanisms described in Section II Chapter 3 contain enough
power to enable such a specification to be formally provided using the ASN.1 notation.

An example of a more complex form of subtyping would be:

                Basic-Ordering-Class ::= Wineco-Protocol
                  (WITH COMPONENTS
                    ordering (Basic-Order) PRESENT,
                    sales                  ABSENT } )

Note that all subtyping (and application of constraints - see below) is done by syntax which is
enclosed in round parentheses and follows some piece of type notation (frequently a type reference
name).

It is, however, possible to also view the notation:

        INTEGER (1..56)

as putting a constraint on the integer field, and this gives rise to considerations of what is to be
done if the constraint is violated in received material.  (This should normally only occur if the
sender has implemented a later version of the protocol where the constraint has been relaxed.  This
is covered in Chapter 5 of Section II (see below).

A number of other forms of constraint have been introduced into ASN.1 in 1994 related to
constraining what can fill in a "hole", or to relating the contents of that "hole" to the value of some
other field.  These other forms of constraint are covered in Section II Chapter 9.

4  Tagging

Earlier text has dipped in and out
of tagging, but has never given a
full treatment.  The TLV concept
(which underlies tagging) was
introduced in Chapter 1 Clause
5.2, and further text on ASN.1
tagging appeared in Chapter 2
Clause 2.7 and Chapter 3 Clause
3.2, where tagging was described
entirely in relation to the TLV
encoding philosophy, and the
concepts of "implicit tagging" and
"explicit tagging" were introduced.

Some mention has also been made of different "classes" of tag, with syntactic constructs such as:

Up to 1994, getting your tags right wasUp to 1994, getting your tags right was
fundamental to writing a correct specification.fundamental to writing a correct specification.
Post-1994, AUTOMATIC TAGS in thePost-1994, AUTOMATIC TAGS in the
module header enables them to be forgotten.  Somodule header enables them to be forgotten.  So
details are relegated to Section II.  If you wantdetails are relegated to Section II.  If you want
to read and understand a specification (or even toto read and understand a specification (or even to
implement one), you already know enough aboutimplement one), you already know enough about
the tag concept, but if you want to take control ofthe tag concept, but if you want to take control of
your tags (as you had to pre-1994), you willyour tags (as you had to pre-1994), you will
need the Section II materialneed the Section II material
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                [3] INTEGER
                My-Useful-Type ::= [APPLICATION 4] SEQUENCE { .... }
                [PRIVATE 4] INTEGER
                [UNIVERSAL 25] GraphicString

Section II Chapter 4:

• Gives a full treatment of the different classes of tag.

• Provides an abstract model of types and values that makes the concepts of explicit and
implicit tagging meaningful, even if encoding rules are being employed that are not TLV-
based.

• Discusses matters of style in the choice of tag-class used in a specification.

• Gives the detailed rules on when tags on different elements of sets and sequences or
alternatives of choices are required to be distinct.

5  Extensibility, exceptions and version brackets

The first two terms - extensibility and
exceptions - have been mentioned in several
places already.

Clause 2 of the Introduction defined
"extensibility" as the means of providing
interworking between deployed "version 1"
systems and "version 2" systems that are
designed and deployed many years later.

If a very great provision is made for
extensibility, then almost every element in an encoding has to be "wrapped up" with a length field
and an identification, even when both parties (if they know the full specification) are perfectly
aware that these are fixed values.  In other words, we are forced into a "TLV" (see Chapter 1
clause 5.2) style of encoding.  If, however, we restrict the places where a version 2 specification
can add new material (and wrap up only the new version 2 material), we can produce a much more
efficient encoding.  This is provided by the Packed Encoding Rules (PER).

The extension marker was briefly introduced in Chapter 3 clause 3.3, together with the exception
specification that identifies actions that version 1 systems should take with any added material.

Section 2 Chapter 5:

• expands on the Chapter 3 text;

• describes all the places where extension markers can be placed;

• illustrates the exception specification;  and

• introduces and describes the concept of "version brackets" (see below).

You will recognise the use ofYou will recognise the use of
extensibility provision by an ellipsisextensibility provision by an ellipsis
(three dots), of exception specification(three dots), of exception specification
by the use of an exclamation mark (!),by the use of an exclamation mark (!),
and of version brackets by the use ofand of version brackets by the use of
an adjacent pair of open squarean adjacent pair of open square
brackets with a matching adjacentbrackets with a matching adjacent
pair of closing square brackets.pair of closing square brackets.
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When extensibility provision was first introduced into ASN.1, every added sequence or set element
was "wrapped up", but it later became apparent that this was not necessary - all that needed
"wrapping up" was the totality of the material added in this place in the new version. Hence we
have the concept of bracketing this material together with so-called "version brackets".  This is

illustrated in figure 24, which is repeated and described more fully in Section II Chapter 5.

Notice that it is not mandatory to include version brackets.  If they are absent the effect is as if
each element of the sequence had been added separately in a succession of versions.

Note also that if there is no further version 1 material ("field3 TypeC" in Figure 24 is not present),
then the final ellipsis is not required, and will frequently be omitted.

6  Hole types

Chapter 2 Clause 2.1 introduced the concept
of "holes":  parts of a specification left
undefined to allow other groups to
"customise" the specification to their needs,
or to provide a carrier mechanism for a
wide variety of other types of material.

In general, specifiers can insert in their protocols any ASN.1 type and leave the semantics to be
associated with values of that type undefined.  This would constitute a "hole".  Thus "holes" can in
principle be provided using INTEGER or PrintableString!  But usually when specifiers leave a
"hole", they want the container to be capable of carrying an arbitrary bit-pattern.  Thus using
OCTET STRING or BIT STRING to form a "hole" would be more common.  This is generally not
recommended, as there are specific ASN.1 types that are introduced to clearly identify the presence
of a hole, and in some cases to provide an associated identification field which will identify the
material in the "hole".

Provision for "hole"s has been progressively enriched during the life of ASN.1, and some of the
early mechanisms are deprecated now.  The following are the types normally regarded as "hole"
types, and are described fully in Section II Chapter 7:

SEQUENCE
                  {field1  TypeA,
                   field2  TypeB,
                   ... ! PrintableString : "See clause 59",
                   -- The following is handled by old systems
                   -- as specified in clause 59.
                   [[ v2-field1  Type2A,
                      v2-field2  Type2B ]],
                   [[ v3-field1  Type3A,
                      v3-field2  Type3B ]],
                   ... ,
                   -- The following is version 1 material.
                   field3  TypeC}

Figure 24:  Illustration of  extensibility markers and version brackets

You can leave a hole by using one ofYou can leave a hole by using one of
several ASN.1 types,  but it may beseveral ASN.1 types,  but it may be
better to use Information Object Classesbetter to use Information Object Classes
instead!instead!
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                ANY (removed in 1994)
                ANY DEFINED BY (removed in 1994)
                EXTERNAL (deprecated)
                EMBEDDED PDV
                CHARACTER STRING

7  Macros

ASN.1 contained (from 1984 to 1994) a very
complex piece of syntax called "the macro
notation".  It was removed in 1994, with
equivalent (but much improved) facilities
provided by the "Information Object Class"
and related concepts (see below).

Many languages, graphics packages, and word
processors, have a macro facility.  The name
"macro" is very respectable.  However, the use
of this term in ASN.1 bears very little
relationship to its use in these other packages.

Section IV ("History") says a little more about what macros are all about.  You are unlikely to
meet the definition of a macro (use of the macro notation) in specifications that you read, but
figure 25 illustrates the general structure (the four dots representing further text whose form is
defined by the macro notation specification).  This piece of syntax can appear anywhere in a
module where a type reference assignment can occur, and the name of the macro (conventionally
always in upper case) can be (and usually is) exported from the module for use in other modules.

The macro notation is the only part of ASN.1 that is not covered fully in this book!  Readers of
this book should NEVER write macros!  However, you will encounter modules which import a
macro name and then have syntax that is an invocation of that macro.  Again, a macro invocation
can appear anywhere that a type definition can appear.

One standard that contains a lot of "holes" is called "Remote Operations Service Element
(ROSE)".  ROSE defines (and exports) a macro called the OPERATION macro to enable its users
to provide sets of information to complete the ROSE protocol.  A typical piece of syntax that uses
the OPERATION macro would look like Figure 26 (but most real examples are much longer).

There is much controversy surroundingThere is much controversy surrounding
macros.  They were part of ASN.1 formacros.  They were part of ASN.1 for
its first decade, but produced manyits first decade, but produced many
problems, and were replaced byproblems, and were replaced by
Information Object Classes in 1994.Information Object Classes in 1994.
You will not often see text defining aYou will not often see text defining a
macro (and should certainly not writemacro (and should certainly not write
any today), but you may still see inany today), but you may still see in
older specifications text whose formolder specifications text whose form
depends on a macro definition importeddepends on a macro definition imported
into a module.into a module.

MY-MACRO MACRO ::=
                BEGIN
                        TYPE NOTATION ::= ....
                        ....
                        VALUE NOTATION ::= ....
                        ....
               END

Figure 25:  The structure of a macro definition

lookup  OPERATION
                        ARGUMENT IA5String
                        RESULT  OCTET STRING
                        ERRORS {invalidName, nameNotFound}
                    ::= 1

Figure 26:  An example of use of the ROSE OPERATION macro
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To fully understand this you need some knowledge or ROSE.  ROSE is briefly described in Section
II Chapter 7, partly because of its wide-spread use, but mainly because it provides good
illustrations of macro use, Information Object Class specification, and exception handling.

The OPERATION macro definition was replaced in the 1994 ROSE specification by specification
of an OPERATOR Information Object Class, and specifications including syntax like figure 26 are
gradually being changed make us of the OPERATOR Information Object Class instead.

8  Information object classes and objects and object sets

When protocol specifiers
leave "holes" in their
specification, there are
frequently several such
holes, and the users of the
specification need to
provide information of a
specified nature to fill in
these holes.  Most of the
uses of the macro notation
were to enable these users
to have a notation to
specify this additional
information.

The Information Object Class concept recognises that specifiers leaving "holes" need to clearly
identify where these holes are, but more particularly to be able to list the information required to
complete the "hole".  In the simplest case, the information needed will be a set of ASN.1 types
(with their associated semantics) that can fill the hole, together with either an integer or an object
identifier value which is associated with that type and its semantics.  The identifier will be carried
in the carrier protocol, as well as a value of the type.

ASN.1 provides a syntax for defining the form of information to be collected.  This is illustrated in
figure 27:

Note the use of the "&" character.  This is the only place that "&" is used in ASN.1, and its
presence is a clear indication that you need to read the Section II material on Information Object
Classes!

Information Object Classes (with objects and objectInformation Object Classes (with objects and object
sets) was the main addition to the ASN.1 notation insets) was the main addition to the ASN.1 notation in
1994, replacing macros with a much enhanced1994, replacing macros with a much enhanced
functionality.functionality.

Detail in these areas are left to Section II, but anDetail in these areas are left to Section II, but an
increasing number of old specifications are being revisedincreasing number of old specifications are being revised
to use this notation, and most new specifications use it.to use this notation, and most new specifications use it.

These areas are important!These areas are important!

MY-CLASS ::= CLASS
                   {&Type-to-fill-hole,
                    &identifier  INTEGER}

Figure 27:  Notation to define an Information Object Class
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Once a specifier has defined an Information Object Class (and typically exported the reference
name), users can then define sets of objects of that class, and link them into the base protocol.
This is amplified and illustrated in Section II.

9  Other types of constraints

There are forms of constraint that are a little
more complex than the simple subtyping
discussed earlier.  They are called "table
constraints", "relational constraints", and
"user-defined" constraints.  The first two are
closely related to the use of a defined set of
information objects to fill in holes in a
consistent manner.  The latter relates to
specification of hole contents which can not be
done in a wholly formal manner within the
ASN.1 notation.  Like simple subtyping, these
constraints always appear in round brackets
following a type name (or a hole
specification).  They are illustrated and
described in Section II

10  Parameterization

The ability to parameterize an
ASN.1 specification is a very
simple but extremely powerful
mechanism.  It was introduced in
1994.  The concept of dummy
parameters of functions or methods
in a programming language is quite
common, with actual parameters being supplied when the function or method is invoked.

In a similar way, an ASN.1 type-reference name can be given dummy parameters, with actual
parameters being supplied when that type is used.

For example:

                My-Type {INTEGER:dummy1, Dummy2} ::=
                        SEQUENCE
                          {first-field  Dummy2,
                           second-field  INTEGER (1..dummy1) }

Here "My-Type" has two dummy parameters, the first an integer used to provide a bound on
"second-field", and a second that provides the type for the first field.  Typically, My-Type will be
used in several different places in the total specification, with different actual parameters in each
case.

Table constraints, relational constraintsTable constraints, relational constraints
- the way to constrain holes in a- the way to constrain holes in a
manner consistent with the definition ofmanner consistent with the definition of
an Information Object Set.  Go toan Information Object Set.  Go to
Section II.Section II.

User-defined constraints - a catch-allUser-defined constraints - a catch-all
for any other constraint that you need!for any other constraint that you need!

Parameterization - very simple but veryParameterization - very simple but very
powerful.  All ASN.1 reference names can havepowerful.  All ASN.1 reference names can have
a dummy parameter list, actual parameters area dummy parameter list, actual parameters are
supplied when they are used.supplied when they are used.
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Parameterization is an important tool to enable the linking of Information Object Sets defined by
user groups into the holes left by the original specifier, although its use is wider than this.

12  The ASN.1 semantic model

There are many places in ASN.1 where the
phrase "must be of the same type as"
appears.  For example, if a dummy
parameter is the value of some type, then
the actual parameter "must be of the same
type as the dummy parameter".  A value
following DEFAULT "must be of the same
type as the type preceding the word
DEFAULT".  It is clear that if the types in
question are the same type-reference name,
then they "are the same type".  But suppose
the two types in question are specified with textually distinct but identical text?  Or textually
distinct but with some minor variations in the text?  Are they still "the same type"?  What "minor
variations" might be permitted?  ASN.1 text up to 1999 had little to say to clarify these questions!
Fortunately, difficult cases rarely appear in real specifications, but writers of ASN.1 tools do need
to know what is legal and what is not (or to make assumptions themselves)!

An attempt was made in 1990 to remove all such phrases and provide more rigour in these areas,
but it proved impossible to get satisfactory text agreed in time, and at the last minute text for the
1994 specification reverted back to the original "must be of the same type".

Work in this area, however, continued.  It was recognised that to solve the problem there needed to
be a well-defined "abstract model" or "mental model" or "semantic model" (the latter term was
eventually chosen) to define the underlying abstractions that were represented by a piece of ASN.1
text, with the starting point being the concept of a type as a container of a set of abstract values as
first described in Chapter 1 Clause 3.1.

At the time of writing (early 1999), the work is complete and agreed, and publication is expected
later in 1999.

13  Conclusion

This completes the discussion of the ASN.1 notation for Section I "ASN.1 Overview" (the
remaining chapters discuss ASN.1 tools and management and design issues).  If more detail is
needed on any of the topics that have not been fully described in this section, then the appropriate
chapter of Section II should be consulted.  These are largely independent, and can be taken in any
order.

For more details about Encoding Rules, see Section III, and for a history of the development of
ASN.1 and some of its applications, see Section IV.

Abstractions, abstractions, models, models.Abstractions, abstractions, models, models.
Everybody has their own.Everybody has their own.

But sometimes they need to be explicit inBut sometimes they need to be explicit in
order to express clearly what is legal andorder to express clearly what is legal and
what is not.what is not.
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Chapter 6
Using an ASN.1 compiler

(Or:  What it is all about - producing the bits on the line!)

Summary:

This chapter:

• describes approaches to implementation of ASN.1-defined protocols,

• briefly describes what needs to be done if an ASN.1 compiler is not available,

• describes in detail the concept and operation of an ASN.1 compiler,

• illustrates the implementation process (when using an ASN.1 compiler), with examples of
programming language structures produced by the "OSS ASN.1 Tools" product,

• discusses what to look for when seeking a "best buy" in an ASN.1 compiler.

This chapter talks about implementation architectures, strategy, and so on.  It is therefore
inevitably incomplete and partial.  The issues it discusses are not standardised, and different
implementors will produce different approaches.  It is also the case that what is "best" on one
platform may well not be "best" on a different platform.

This chapter gives an insight into the implementation of protocols specified using ASN.1, but
much of the detail depends on knowledge of programming languages such as C and Java, and
knowledge of BER encodings that are covered in Section III.  Nonetheless, those without such
knowledge can still gain useful information from this chapter.  But if you are not a programmer,
read the next clause then skip the rest completely!

1  The route to an implementation

We discussed in Chapter 1 clause 5.6 (and illustrated
it in figure 12) the implementation process using an
ASN.1 compiler.  Before reading this chapter, you
may wish to review that material.  You simply "compile" your ASN.1 into a programming
language of your choice, include the compiler output with application code that deals with the
semantics of the application, (really) compile and link.  Your own code reads/writes language data-
structures, and you call ENCODE/DECODE run-time routines provided by the ASN.1 compiler
vendor when necessary (and provide an interface to your lower layer APIs.)

That is actually all you need to know, but if you want some more detail, read on!

Its all so simple with a compiler!
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2  What is an ASN.1 compiler?

We all know what "a compiler" normally means - a
programme that reads in the text of a programme
written in a high-level language and turns it into
instructions that can be loaded into computer
memory and obeyed by some particular computer hard-ware, usually involving a further linking-
loader stage to incorporate run-time libraries.

But ASN.1 is not a programming language.  It is a language for defining data structures, so how
can you "compile" ASN.1?

The term compiler is a little bit of a misnomer, but was first used to distinguish very advanced
tools supporting the implementation of ASN.1-defined protocols from early tools that provided
little more than a syntax-checking and pretty-print capability.  In the rest of this chapter, we will
use the term "ASN.1-compiler-tool", rather than "compiler".

There are several ways of implementing a protocol defined using ASN.1.  The three main options
are discussed below.

• Write all necessary code to encode and decode values in an ad hoc way.  This is only
suitable for the very simplest ASN.1 specifications, and leaves you with the full
responsibility for debugging your encoding code, and for ensuring that you have the ability
to handle all options on decoding.  (The same statement would apply to character-based
protocols defined using BNF, where there are some tools to help you, but they do not
provide anything like as much support as an ASN.1-compiler-tool with an ASN.1-based
specification).  We will not discuss this option further.

• Use a pre-built and pre-tested set of general-purpose library routines with invocations such
as:

                encode_untagged_int (int_val, output_buffer);

However, the above is just about the simplest invocation you will get.  In most cases you
will also want to provide an implicit or explicit tag (of one of three possible classes), and
for constructed types such as SEQUENCE, support in this way can become quite complex.
This approach also only really works well with BER, where constraints are irrelevant and
there is a relatively rigid encoding of tags and lengths.  This approach pre-dated the
development of ASN.1-compiler-tools, and is discussed a little further later.

• Use an ASN.1-compiler-tool that lets you put values into a programming language data-
structure corresponding to your ASN.1 type (and generated by the ASN.1-compiler-tool
automatically from your ASN.1 type) and then make a single invocation of "encode" when
you have all your values in place, to produce a complete encoding of the value of that type.
This provides the simplest implementation, with the least constraints on the structure of the
application code, and is the approach discussed most in this chapter.  It works equally well
for PER, DER and CER as it does for BER, and makes maximum use of tested and
debugged code for all aspects of encoding.

However, remember that we usually have to decode as well as to encode.  In the case of the third
option (use of an ASN.1-compiler-tool), decoding is no more difficult than encoding.  Run-time
routines provided by the ASN.1-compiler-tool will take an encoding of the value of an ASN.1 type
and set all the fields of the programming language data-structure corresponding to that type.

What does it mean to "compile" a
datastructure definition?
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With the middle option, encoding is basically a series of invocations of appropriate library
routines, but for decoding there is the further problem of parsing the received bit-string into a tree-
structure of primitive values, and then tree-walking this parse tree to find the primitive values.
Again, this is more easily possible with BER than with PER, because with BER the parse tree can
be constructed without knowledge of the type of the value being decoded.

The use of a library of encode routines and of a parse tree are discussed further below (briefly),
but the chapter concentrates mainly on the use of an ASN.1-compiler-tool, as this provides a
simple approach to implementation of ASN.1-based specifications, with effectively a 100%
guarantee (assuming the ASN.1-compiler-tool is bug-free!) that:

• Only correct encodings of values will be produced.

• No correct encoding will "blow" the decoder, values being correctly extracted from all
possible correct encodings.

As an illustration of what ASN.1-compiler-tools produce, we will use a part of our wineco
specification, that for "Return-of-sales", which references "Report-item".   These were first shown
in Figure 22 (part 2) in Chapter 4 of this section, and are repeated here without the comments.
The C and Java structures and classes produced by the "OSS ASN.1 Tools" product (a good
example of an ASN.1-compiler-tool product) are given in Appendices 3 and 4, and those familiar
with C and Java may wish to compare these structures and classes with figure 28.  (The "OSS
ASN.1 Tools" product also provides mappings to C++, but we do not illustrate that in this book –
it is too big already!)

Return-of-sales ::= SEQUENCE
         {version       BIT STRING
               {version1 (0), version2 (1)} DEFAULT {version1},
          no-of-days-reported-on  INTEGER
                {week(7), month (28), maximum (56)} (1..56)
                DEFAULT week,
          time-and-date-of-report  CHOICE
                {two-digit-year  UTCTime,
                 four-digit-year GeneralizedTime},
          reason-for-delay  ENUMERATED
            {computer-failure, network-failure, other} OPTIONAL,
          additional-information
                 SEQUENCE OF PrintableString OPTIONAL,
          sales-data  SET OF Report-item,
          ... ! PrintableString : "See wineco manual chapter 15" }
       Report-item ::= SEQUENCE
         {item                OBJECT IDENTIFIER,
          item-description    ObjectDescriptor OPTIONAL,
          bar-code-data       OCTET STRING,
          ran-out-of-stock    BOOLEAN DEFAULT FALSE,
          min-stock-level     REAL,
          max-stock-level     REAL,
          average-stock-level REAL}

Figure 28 - An example to be implemented
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3  The overall features of an ASN.1-compiler-tool

An ASN.1-compiler-tool is composed of a "compiler",
application-independent programming language text to be
included with your implementation (for C, this is .H and
.C files), and libraries to be linked into your final
executable.  For some platforms, the compiler may also
emit text which has to be compiled to produce a DLL
which will be used at run-time.

The overall pattern is that the "compiler" phase takes in ASN.1 modules, and produces two main
outputs.  These are:

• Data-structure definitions (for the language you have chosen) that correspond to the
ASN.1 type.

• Source text (for the language you have chosen) which will eventually produce either tables
or code which the run-time routines in the supplied libraries can use to perform
encode/decode operations, given only pointers to this information and to the in-core
representation of the values to be encoded (and a handle for the buffer to encode into).
This text includes all details of tagging in your ASN.1 types, so you never need to worry
about tags in your implementation code.

For some platforms, the situation can be just a bit more complex. The compiler may output text
which you must compile to produce a DLL for use by your application.

The next section looks at the use of a simple library of encode/decode routines, and then we look at
the output from the "compiler" part of the "OSS ASN.1 Tools" compiler and the use of that tool.

4  Use of a simple library of encode/decode routines

The earliest support for ASN.1
implementations (after simple syntax checkers
and "pretty print" programs had been
produced) was a library of routines that helped
in the generation of BER tag (identifier) fields,
BER length fields, and the encoding of BER
primitive types.

Some implementations today still use this approach.  It is better than doing everything from
scratch!

The approach is described in terms of a BER encoding.  For a PER encoding it tends to work
rather less well, and the ASN.1-compiler-tool approach would be more appropriate here.

This does it all.  Take your
ASN.1 type.  "Compile" it
into a language data-structure.
Populate it with values.  Call
ENCODE.  Done!  Decoding
is just as easy.

A library of encode/decode routines (one
for each ASN.1 type) is better than
nothing.   But complications arise in the
handling of nested SEQUENCE types
etc, particularly in relation to length
fields.
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4.1  Encoding

Encoding of untagged primitive items is trivial -
but add tagging and add constructed types with
nesting of SEQUENCE OF within SEQUENCE
within another SEQUENCE OF (etc), and .... well,
life is not quite so simple if all you have available
is a library that just does identifier and length
encodings for you (and encodings of primitive values).

Before the emergence of ASN.1-compiler-tools, a common approach to encoding a sequence such
as "Report-item" (see Figure 28) would be to have code looking something like Figure 29 (using
pseudo-code).

Here we assume we have routines available in a library we have purchased that will take a value of
any given ASN.1 primitive type (using some datatype in the language capable of supporting that
primitive type) and returning an encoding in a buffer.  Finally, we call another library routine that
will put all the buffers together (note the copying that is involved here) and will generate the "T"
and the "L" for a SEQUENCE (assuming we are using BER), returning the final coding in
buffer_y.

Clearly, if we have more complex nested structures in our ASN.1, this can become quite messy
unless we are using a programming language that allows full recursion.  We have effectively hard-
wired the ASN.1 structure into the structure of our code, making possible changes to version 2  of
the protocol more difficult.

There are some things that can be done to eliminate some of the copying.  Part of the problem is
that we cannot generate the BER octets for the length octets of a SEQUENCE until we have
encoded all the elements of that sequence and counted the length of that encoding.

Encoding using a library of routines
can get messy, because you often need
to know the length of an encoding
before you encode it!

                Get value for "item" into x1
                encode-oid (x1 , buffer_x[1] )
                Get value for "item-description" into x2
                encode_obje_desc ( x2, buffer_x[2] )
                Get "bar-code-data" into x3
                encode_octet_str ( x3, buffer_x[3] )
                Get "ran-out-stock" value into x4
                IF x4 is true THEN
                        encode_boolean ( true, buffer_x[4] )
                ELSE
                        Set buffer_x[4] to an empty string
                END IF
                ....
                etc, encoding the last item into buffer_x[7] say.
                ....
                encode-sequence (buffer_x, 1, 7, buffer_y)
                -- This encodes the contents of buffer_x from 1 to 7
                -- into buffer_y with a "SEQUENCE" wrapper.
                -- Note that in practice the SEQUENCE may be tagged
                -- resulting in a more complicated calling sequence
                Pass buffer_y to lower layers for transmission.
                Clear buffer_x, buffer_y

Figure 29 - Pseucode to encode “Report-item”
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For encoding a SEQUENCE there are (at least!) four ways to reduce/eliminate this problem of
having to copy encodings from one buffer to another.  These are:

• Do a "trial encoding" which just does enough to determine the length of each element of the
sequence (this really needs to be a recursive call if our structure involves many levels of
SEQUENCE or SEQUENCE OF), then generate the SEQUENCE header into the final
buffer, then encode each of the SEQUENCE elements into that buffer.

• Use the indefinite length form, in which case we can generate the sequence header into our
final buffer and then encode into that buffer each of the elements of the sequence, with a
pair of zeros at the end.

• Use the "trick" of allocating space for a long-form length encoding which is a length of
length equal to 2, followed by two blank octets that we will fill in later once the length is
known, and then encode each element into the same final buffer.

• Use (assuming it is available!) a "gather" capability in the interface to lower layer software
which enables you to pass a chain of buffers to that software, rather than a single
contiguous piece of memory.

These approaches have been shown to work well for BER, but for CER/DER/PER, they can be
either not possible (CER/DER demands minimum octets for length encoding) or more
difficult/complex.

4.2  Decoding

Decoding using library routines is not quite so easy.
You need a general-purpose parser - relatively easy
for BER (less easy for PER), tree-walking code, and
then the basic decode routines for primitive types.
This rather parallels what you have to do with
character-based encodings - but with character-based
encodings you need a quite sophisticated tool to split
the incoming character string (based on input of the
BNF) into a tree-structure of "leaf" components for processing.  Producing a parse tree of BER is
rather easier.

In general, use of a simple library of encode-decode routines with ASN.1 is neither complex nor
more simple than use of parsers for character-based protocols defined using BNF, although it is
arguable that the original ASN.1 definition is more readable to a "layman" than a BNF description
of a character-based protocol.

It is also the case that parsing an incoming BER encoding into a tree-structure (where each leaf is
a primitive type) is a great deal easier than producing a syntax tree from a character-based
encoding defined using BNF.

Decode implementations for BER can take advantage of the use of bit 6 of the identifier octets to
identify whether the following "V" part is constructed, enabling application-independent code to
produce a tree-structure with primitive types at the leaves.  That tree-structure is then "walked" by
the application-specific code to determine the values that have been received.

For decoding you need a general-
purpose parser, then you tree-walk.
The library approach is easier with
BER than with PER as the TLV
structure is independent of the data-
type.
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This "library of useful routines" approach is certainly better than doing everything from scratch!
But things are so much simpler with an ASN.1-compiler-tool as described below.

5  Using an ASN.1-compiler-tool

5.1  Basic considerations

An ASN.1-compiler-tool makes everything much more
of a one-step process (for the user of the tool).  All the
decisions on how to encode (copying buffers, doing trial
encodings, using indefinite length, using long-form
definite length with a length of two) are buried in the
run-time support of the ASN.1-compiler-tool, as are the
mechanisms for parsing an incoming encoding into
components that can then be placed into memory in a
form which matches a programming-language data-structure.

ASN.1-compiler-tools are specific to a given platform (meaning hardware, operating system,
programming language, and perhaps even development environment) and you will need to find one
that is available for the platform that you are using.  If you are using C, C++, or Java, on
commonly used hardware and operating systems you will have no problem, but if you are locked
into some rather archaic language (sorry if I sound rude!), life may be more difficult.

A particular product may support several of these languages in one software package, using
"compiler directives", or you may have to pay for several versions of a product if you want
support for multiple platforms (C and Java, say).  In some cases "cross-compilation" (which some
ASN.1-compiler-tools support) can provide implementation support on older platforms.  Basically,
you need to "filter" available tools according to whether they can support directly or through cross-
compilation the platform you want/need to use, then choose the "best" (see later section in this
chapter).

"Want/need" is important here.  Sometimes the implementation platform is fixed and almost
impossible to change for either historical reasons or for reasons of company policy, but more often,
there are costs associated with the use of different platforms (procurement of hardware which is
not "in-company", training costs of programmers, etc etc) which must be balanced against the
"quality"  (and cost) of available tools for these platforms.

5.2  What do tool designers have to decide?

There are three very critical decisions in the design
of a good ASN.1-compiler-tool - how to map ASN.1
data-structures to programming-language data-
structures, how to make CPU/memory trade-offs in
the overall run-time support, and how to handle
memory allocation and buffer management during
encode/decode operations.  But other important
decisions are how much user control, options, and flexibility to provide in these areas.  All of these
factors contribute to the "quality" of any particular tool.

With an ASN.1-compiler-tool,
life gets quite a bit simpler!
How simple can you make it?
Not much more, given that
ASN.1 does not address
semantics in the formal notation.

How to map to the programming
language, CPU/memory trade-offs,
memory allocation and buffer
management, and user control -
these are the main issues.
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The designers of the ASN.1-compiler-tool will have made some important decisions.  We will see
later that the quality of these decisions very much affects the quality of the ASN.1-compiler-tool
(and the ease and flexibility with which you can use it to help you to produce protocol
implementations).

The most important areas they have had to address (and which affect the quality of the resulting
ASN.1-compiler-tool) are:

• How to map ASN.1 into programming-language data-structures?

• What are the right trade-offs between run-time encoding/decoding speed and memory
requirements?

• How to handle memory allocation when performing encode and decode operations?

• How much user control should be provided (and how - global directives or local control)
on the behaviour of the tool for mappings and for run-time operation?

None of these decisions are easy, but the best tools will provide some degree of user control in all
these areas, through the use of "compiler directives", ideally both in terms of global default
settings as well as specific local over-rides.  (For example, for two-octet, four-octet, or truly
indefinite-length integers).

5.3  The mapping to a programming-language data structure

The designers of the ASN.1-compiler-tool
will have determined a mapping from any
arbitrarily complicated set of ASN.1 types
into a related (and similarly complicated)
set of datatypes in your chosen language.
And they will have written a program (this
is the bit that is usually called the
"compiler") which will take in the text of an
ASN.1 module (or several modules linked
by EXPORTS and IMPORTS) and will
process the module(s) to generate as output
the mapping of the types in those modules
into the chosen target language.

How does that help you?  Well, your pseudo-code for encoding "Report- item" now looks more like
figure 30.

This is perhaps the most important design
decision.  It is often called "defining the
API for ASN.1", and in the case of C++
there is an X-Open standard for this.  Get
that wrong, and there will be some abstract
values of the ASN.1 type that cannot be
represented by values of the programming-
language data-structure.  Or perhaps the
programming-language data-structure
generated will just produce programming-
language-compiler error messages when you
try to use it!
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Note that however complicated a nested structure of types or repetitions of SEQUENCE OF there
are, there is just one call of "Encode" at the end to encode your complete message from the values
you have set in your programming language data-structure.

For incoming messages, the process is reversed.  Your own code does no parsing, and no tree-
walking.  It merely accesses the fields of the programming-language data-structure that the
"compiler" part of the tool generated for you.

"CompilerInfo" in the call of "Encode" is information passed from the "compiler" part of the tool
to the run-time routines.  This passes (inter alia) the tagging to be applied for BER. Although
largely invisible to you (you do not need to understand the form of this information), it is
absolutely essential to enable the run-time routines to provide their encode/decode functions.

5.4  Memory and CPU trade-offs at run-time

What is this parameter "CompilerInfo"?  This is a
vital magic ingredient!  This is produced by the
compiler, and contains the "recipe" for taking the
contents of memory pointed to by "Return-of-sales"
(for example), finding from that memory the actual
values for the ASN.1 type, and encoding those
values with correct tags, correct use of DEFAULT, etc.   It essentially contains the entire
information present in the ASN.1 type definition.

There are (at least!) two forms this "CompilerInfo" can take:

• It can be a very compact set of tables which are used in an interpretive fashion by
"Encode" to determine how to encode the contents of the memory containing a value of (eg)
"Return-of-sales" (and similarly for "decode").

• It can be (rather more verbose, but faster) actual code to pick up the value of each field in
turn to do the encoding of that field (and to merge the pieces together into larger
SEQUENCE, SEQUENCE OF, etc structures).  In general, open code is probably more
appropriate for PER than for BER, as tags and lengths are often omitted in PER, whereas
a table-driven approach, defining the tags to be encoded and letting the interpreter generate
the lengths, may be more appropriate for BER.  It is horses for courses!

                Get value for "item" into Report-item.item
                Get value for "item-description" into
                                Report-item.item-description
                Get "bar-code-data" into Report-item.bar-code-data
                Get "ran-out-of-stock" value into
                                Report-item.ran-out-of-stock
                ...
                etc, setting all the fields of Report-item
                ...
                Call Encode (CompilerInfo, Report-item, Buffer)
                Pass Buffer to lower layers for transmission
                Clear Buffer

Figue 30 - Pseudo-code to encode using an ASN.1-compiler-tool

Interpretation of tables is a pretty
compact way of performing a task,
but open code is faster!  With the
best tools youyou choose.
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Just as there are many different implementation architectures for hand-encoding, so there are many
different possible architectures for the design of tools. With implementation architectures, all that
matters is that the bits-on-the-line are correct.  And similarly with an ASN.1-compiler-tool, all that
really matters is that it produces a programming-language data-structure that can represent all
abstract values of the ASN.1 type, and that it efficiently produces correct encodings for values
placed in that data-structure.  (With similar remarks concerning decoding.)  I don't know exactly
how the "OSS ASN.1 Tools" product goes about producing an encoding (or decodes), but it does
produce the right results!

5.5  Control of a tool

There are a host of options that can be incorporated into
an ASN.1-compiler-tool (and/or the run-time libraries
that support it).  For example:

• The language or platform to "compile" for.

• How to represent ASN.1 INTEGER types in the programming-language data-structures.

• Whether to use arrays or linked-list structures in the mapping from ASN.1 to your
programming-language (for example, for "SEQUENCE OF").

• Which encoding rules to use for encoding (and to assume for decoding).

• (Slightly more subtle) Which encoding rules can be selected at run-time - all or only a
subset?  (This affects the library routines that are included, and hence the size of the
executable.)

• Which encodings to use in the non-canonical encoding rules.

• Whether the user prefers the fastest possible encode/decode or the smallest executable.

• (Fairly unimportant) The names of the directories and files that will be used at both
compile-time and run-time.

• And many others.

The control by the user can be expressed by a global configuration file, by command-line
directives, by an "options" button in a Windows-based product, by "compiler directives" embedded
in the ASN.1 source, or by run-time call parameters, or by several of these, with one providing a
global default and another overriding that default locally.  With the "OSS ASN.1 Tools" product,
compiler directives are included after a type definition (where a subtype specification might go) as
a specialised form of comment.  For example:

                        SET --<LINKED>-- OF INTEGER

Inevitably there are options you
want to leave to the user.  How
best to do that?
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6  Use of the "OSS ASN.1 Tools" product

Here we describe how to encode values with one
particular tool.  The process with other ASN.1-
compiler-tools is similar.

When you use the "OSS ASN.1 Tools" product to
support an application written using the C
programming language, you input an ASN.1 specification (and identify the top-level type that
forms the abstract syntax, or PDU, to the compiler via a compiler directive).  This can be defined
using a single module or several modules. There are four outputs (but only the last two are
important for correct ASN.1 input):

• A "pretty-print" listing (not really very important).

• Error and warning messages if your ASN.1 is a bit "funny".

• A ".h" header file that contains the mapping of your ASN.1 types into C language data-
structures.

• A ".c" control file that conveys information from the compiler to the run-time routines that
you will invoke to encode and decode.

The latter is pretty incomprehensible (but vitally important), and you ignore it, other than to
compile it with your C compiler and link in the resulting object file as part of your application.

The ".h" file is included with your own code, and compiled to form the main part of your
application, which will include calls to "encode" and "decode".  You also link in a run-time library.
At this stage you may wish to look at Appendices 3 and 4, which have not been included in ths
chapter due to their bulk.

Appendix 3 gives most of the ".h" file for "Return-of-sales" and "Report-item" for the C language
implementation (and some parts of relevant "include" files).  Appendix 4 gives the equivalent for a
Java implementation.

I offer no explanation or discussion of these appendices - if you are a C or Java programmer, the
text (and its relation to the ASN.1 definitions) will be quite understandable.  If you are not, just
ignore them!

And there you have it!  Of course, the original application standard could have been published in
"pseudo-C" or in Java instead of using ASN.1, but would that really have been a good idea?  For
once I will express an opinion - NO.  Ask the same question in 1982/4 and it would have been
COBOL or Pascal (or perhaps Modula) that we would have been talking about.  And even if you
define your structures in "pseudo-C", you still have to make statements about the encoding of those
structures, the most important being about the order of the bytes in an integer when transmitted
down the line, about the flattening of any tree structures you create, about the size of integers and
of pointers, and so on.  It really is rather simpler with ASN.1 - let the ASN.1-compiler-tool take
the strain!

The appendices are not of course the entire compiler output.  There is also the control information
used by the run-time routines to perform the encode/decode, but the implementor need never look
at that, and it is not shown here.

Put your values in the language
data-structure and call ENCODE.
That is all there is to it!  More-
or-less!
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7  What makes one ASN.1-comiler-tool better than another?

There are many dimensions on which the
quality of a tool can be judged.  The major
areas to be looked at are:

• The extent of support for the full
ASN.1 notation.

• The mappings to programming-language data-structures.

• Run-time memory/CPU trade-offs.

• Memory allocation mechanisms.

• The degree of user control over options.

We have already had some discussion of most of these areas when we discussed the sorts of
decisions a tool vendor needs to take.  Here we highlight a few points of detail.  It is, however,
important to recognise that with the best tools, absolutely none of the problems listed below
will arise.  Indeed, many of the problems occurred only in early tools before they were fully-
developed.

Some early tools provided no support for ASN.1 value notation, so you needed to remove all value
assignments from your module and replace "DEFAULT" by "OPTIONAL", handling the default
value in your application code.

Other early tools could only handle a single module (no support for IMPORTS and EXPORTS), so
you had to physically copy text to produce a single module.  The better tools today will handle
multiple modules, and (once you have identified your top-level message to them) will extract from
those modules precisely and only those types that are needed to support your top-level message.

Another issue is whether you can use the ASN.1 definition as published, or whether you have to
help the parser in the tool by adding a semi-colon to the end of each of the assignment statements
in your module.

There are other tools that are designed simply to support one particular protocol, and will
recognise only the types that appear in that protocol.  If that protocol is extended in version 2 to
use more types, you may have to wait for an upgrade to your tool before you can implement
version 2!

There is also the issue of the 1994 extensions to ASN.1 - Information Object Classes etc,
described in Section II.  This is probably the area where you are most likely to still find lack of
support in some tools.

The mapping to the programming-language data-structure is a very critical area.  If this is got
wrong you may not be able to set all the values you should be able to!

Note also that ASN.1 allows arbitrary length names for identifiers (with all characters significant),
and is case sensitive. In some programming languages, characters after (e.g.) the 31st are simply
discarded.  Does the tool ensure that long names (which are quite common in ASN.1) are mapped
into distinct programming language names in an ergonomic way that you can understand?

OK.  So you want to buy an ASN.1-
compiler-tool?  What to look for in a
best-buy?  It is not as easy as buying a
washing-machine!  Here are some things
you might want to look for or beware of.



122                                                                                                                           © OSS,31 May 1999

What about INTEGER types?  A good tool will give you control (usually through either global
directives or directives you embed into the ASN.1 text against a particular type) over the mapping
of INTEGER types, for example into a short, normal, long, or huge (represented as a string)
integer.

There are also efficiency considerations in the mappings.  On some platforms there is the concept
of "native" integer types.  Mapping directly into these can be much more efficient than proceeding
in a more generic (platform-independent) manner.

It is important here to remember that the mappings from ASN.1 to a programming language
(usually called an "ASN.1 Application Programme Interface (API)" are in general not
standardised, so each tool vendor does their own thing.  (Work was done within X-Open on
standardisation of the mapping to C++ - called the ASN.1/C++ API - but I am not sure whether
the document was finally ratified.  If you want to use C++ as your implementation language, you
may want to ask your tool vendor about whether they use that mapping or not.)

We discussed earlier the option of a largely interpretative table-driven approach (using little
memory) versus an approach based on generated code (taking more memory but faster) to run-time
encoding and decoding.  This is one area where you will probably be looking for options in the use
of the tool that will enable you to choose for each application or platform which approach you
want taken.

And finally, we discussed earlier the means of providing user control over tool options and the
range of such options that can be controlled.

All these factors contribute to the "quality" of a tool, but you will certainly want to look at the cost
as well!  Most tool vendors charge a licence fee that gets you just one copy of the ASN.1-compiler-
tool, but unlimited copies of the run-time support (which you clearly need if you are to distribute
your resulting application!).

8  Conclusion

This chapter has discussed how to build an actual implementation for a protocol that has been
defined using ASN.1.  It is followed by some discussion of management and design issues for
consideration by managers, specifiers, and implementors, to complete Section I of this book.
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Chapter 7
Management and design issues for

ASN.1 specification and
implementation

(Or: Things you need to think about!)

Summary:

This chapter:

• collects together many of the issues and "style" decisions mentioned elsewhere in the text;

• identifies some global issues for management decisions;

• identifies matters that specifiers need to consider;

• identifies matters that implementors need to consider.

The section on management decisions should be understandable to anyone who has read Section I.
The remaining sections will require a knowledge of material covered in Section II, assume a
quite detailed knowledge of ASN.1, and cover some fairly abstruse areas.

A word of caution:  I am not a believer in management gurus and elaborate "methodologies".
Most of the headings below have the word "issues" in them.  The following text is designed to give
the reader some idea of the options, and things they should consider.  At the end of the day you
make the decisions, not me!  I try as much as possible to suggest areas you should think about,
rather than to tell you what I think you should do.  If occasionally I move towards the latter, I
apologise and please feel free to ignore my advice!

Much of what is being said in this chapter is opinion (Figure 999 again!), not fact, and there are
others who may well have different and perhaps opposite views to some of the suggestions made
here.
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1  Global issues for management decisions

1.1  Specification

1.1.1  To use ASN.1 or not!

This has been well-discussed in Chapter 1, when a
variety of techniques for defining protocols were
described.  This of course is the number 1 decision,
but may be more conditioned by the culture within
which the protocol specification is being made, or
on the specification notation that has been used for
other related protocols.

By now, you should have a clear view of the ease of producing a specification using ASN.1, and of
the ease of implementing such a protocol provided an ASN.1 tool is available.

The counter-argument is that, simply because of its ease of use, ASN.1 does not force you to keep
your specification simple (but of course does not prevent you from doing so!), and the more
complex the protocol becomes the more your implementors will need tool support, and tools do
cost money!

However, if you are expecting your protocol to be implemented by commercial firms, with perhaps
ten to twenty man-years of effort going into the implementation, the cost of purchasing a tool
becomes totally insignificant.  Paying money for a professionally-developed, supported, and robust
tool is often more effective in the long run than use of a "freebie".  (The main counter-argument to
this is probably the Apache Web server - probably the most popular Web server in use today, and
it is free!  But there is an English saying "the exception proves the rule".)

1.1.2  To copy or not?

If you need an ASN.1 type defined in (and
exported by) another standard, there is a
clear argument for importing that type into
your own module(s).  This is commonly done
for ROSE datatypes and object classes, and
for X.500 Directory Names and for X.509 certificates.  In this case you would, of course, also
include a clear reference to the source that your were importing from.

There is, however, another option that has been taken by some specifiers, and that is to simply
copy a type definition into your own specification (of course also giving the semantics related to
the fields).  This is arguably in violation of the copyright laws, or at least of intellectual property
rights, unless your specification is to be published by the same standards body as the one you are
copying from, but it has ocurred in a number of specifications, even when the above caveat does
not apply!

There are three main reasons for copying (embedding) rather than importing and referencing:

• It gives you control over the material, preventing problems and confusion if the referenced
material is changed in a later version in a way that is not compatible with your own
specification.

If you have read this far, and you
are able to influence the specification
language used for a protocol, then I
am sure you will ensure that ASN.1
is seriously considered.  Go on to the
next clause!

Copying is wrong, yes?  You may be able to
get permission, and it may be the better
solution.  Look at the issues below.
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• It means that your implementors only need to obtain your documents - your specification
is complete and self-contained.

• You want only a simplified version of the copied material (this is often the reason why you
find copies of the ROSE material in other specifications, rather than direct use of
IMPORT).

Decisions on this issue are not easy, and should be taken consciously after appropriate discussion.

There are no other real management issues related to specification (but many more details for
specifiers are discussed below), so we now turn to issues related to implementation.

1.2  Implementation - setting the budget

Any commercial project needs detailed costings, but it can
be easy to overlook some of the hidden costs (or
opportunities to spend money wisely!) when undertaking an
implementation of an ASN.1-based specification.  Some of
these are mentioned below.

1.2.1  Getting the specs

There are two sets of specifications that you
need - those for the protocol you are
implementing and those for ASN.1 itself.

In most cases you will want to use the latest versions of both the protocol specification and the
ASN.1 specifications, but occasionally there may be some industry or community of interest
agreement on use of older versions. (The ASN.1 1990 issue is discussed in Chapter 1 of Section
IV). Be careful, too, to look out for corrigenda and addenda to the specifications.  The place you
obtained your specifications from should be able to alert you to this.  In some cases there may be
draft corrigenda or addenda in circulation. In this latter case, you may need to investigate further
and perhaps try to contact the chairman or rapporteur or editor of the standards to discover the
stability of these documents.  Draft corrigenda and draft addenda do not always become approved
corrigenda or addenda (at least not without sometimes substantial change).

Note that ITU-T now have a Web-site from which (provided you have set up an account) you can
purchase all ITU-T specifications and down-load copies over the Web.  ETSI (European
Telecommunications Standards Institute) have a similar site, but ETSI standards are free!  Many
of these use ASN.1 as their specification language.  Links to these sites can be obtained via
Appendix 5.

In the case of your protocol specifications (but not the ASN.1 specifications themselves) it will be
important to try to get hold of an electronic copy of the ASN.1 parts of the specification if you are
going to use a tool, otherwise you will have the tedious and error-prone task of keying in that text.

The vendor of your tool is likely to be able to help you here, and electronic copies of ASN.1
specifications  usually circulate without charge and are sometimes on the Web.  Another source of
an electronic copy is the Editor of the protocol specification, who will usually be happy to provide
one provided there are no commercial vendors of electronic versions and provided he knows you
have bought the printed version of the specifications.

Just a few things you should
not forget about when doing
your costings ...

Of course you need the specification for
your protocol.  But also for ASN.1, and
possibly for anything either of these
reference.
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You will need to get these specifications in a timely manner for your project, and in both cases
(ASN.1 specs and your protocol specs) you will probably find you need some supporting
specifications as well, and these need to be identified early in the project.

In the case of the ASN.1 specifications, full details of the encoding of REAL, of GeneralizedTime
and of most of the character set types require reference to additional separate specifications, so if
these types are used in your protocol specification, you will need to obtain these other
specifications as well.

It is ISO advice that when one Standard references another, you should always use the latest
version of the referenced Standard.  This can, however, sometimes be dangerous, and it is always
well to check publication dates to see which version of a referenced Standard was current at the
time of publication of the referencing Standard, and see what impact the changes made might have
on your protocol.

1.2.2  Training courses, tutorials, and consultants

Another cost that is easily over-looked
(and time for it not included in the
project plan) is training time and the
cost of courses for your
implementation team.

A "theory only" course on ASN.1 (covering more or less the same technical material as this book,
but without the sorts of discussions that are appearing in this chapter and in a few other places)
will take about two days.  A course with some hands-on work writing ASN.1 specifications and
using a tool could be as long as four days.

You may also want to supplement such courses with purchases of this book!  (Or of the companion
volume by Olivier Dubuisson - available in both French and English.  See Appendix 5 for a link.)

Similarly, there are commercial courses available giving a good introduction to many of the
protocols that are specified using ASN.1, and if these are available for the protocol you are
implementing, you will probably want to use them.  Frequently the speaker/trainer/presenter will
be active in standardization of that protocol, and can alert you to the state of any addenda and
corrigenda that may be circulating.

Finally, there are a (small) number of people that advertise themselves as "ASN.1 consultants".
They will give implementation advice,  or will take an outline of a protocol you want written and
produce the ASN.1 for you.  But you pay consultancy prices!

1.3  Implementation platform and tools

You may have no choice on the implementation
platform (hardware, operating system,
programming language), due to the need to extend
an existing system, or to your firms global
policies, or simply due to the operating system
and programming language experience of your
existing employees.

Commercial courses are commercial!  (But your
tool vendor may have a bundle that includes some
courses and tutorial material for you).

There are many factors involved in
taking decisions on implementation
platforms, but there can be interactions
between tool choice and platform choice.
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But if you do have a choice, a decision on the platform should be taken along with the decision on
whether to use a tool, and if so which one.  (Aspects of the "quality" of a tool were discussed in the
previous chapter, and should be considered here.)

At least one tool vendor will provide their tool for any platform, provided a C-compiler or a C-
cross-compiler exists for that platform.  Tools supporting programming in  C, C++, and Java are
all available.

2  Issues for specifiers

This clause discusses a number of points that those involved in protocol specification using ASN.1
should consider.

2.1  Guiding principles

There are four main principles to keep in mind
(some apply to all protocol design, whether
using ASN.1 or not).  These principles may
sound very obvious, but they are often over-
looked:

• Simplicity:  Keep it as simple as possible, whilst being as general and flexible as
necessary.

• Unambiguous and complete:  Make absolutely sure you have left no ambiguities in your
specification, and no implementation dependence in your specification unless you
consciously decide to do so.  In the latter case, make sure that such dependencies are
clearly stated, not just implied or hidden, and that you consider the full interworking
problems of such dependencies.

• Avoid options:  Try to avoid encoder options unless there is a very good reason for them,
as this reduces decoder implementation costs and testing costs.  Allowing options on what
parts of the total specification need be implemented is also dangerous, and unless done
carefully can seriously limit interworking (but is often done!).  A detailed application of
this principle says "Don't use SET or SET OF, always use SEQUENCE or SEQUENCE
OF instead".

• Think about the next version:  There always will be a next version if your protocol takes
off.  How might it differ?  How do you want added material to be handled by version 1
systems?

Most of these principles map into some specific ASN.1 features and their use that are described
further below.

Four principles?  Surely it should be the
magic seven, or just one!  These four will
do for now.
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2.2  Decisions on style

The best advice is for you to look at as many
different specifications as you can and make a
conscious decision on the various style issues.

Some simple things to consider are:

• Fonts:  Use of different fonts to distinguish formal material from English text.

• Order of definitions:  Top-down listing of type definitions or alphabetical listing?

• Module structure:  Grouping of related definitions into modules and the order and overall
structure of modules.

• Line numbers and indexes:  Possible use of line numbering and provision of an index
(showing where defined and where used for each reference name) for the specification.

• Lengths of reference names:   Long names can be clearer, but can clutter-up a
specification.  Don't rely on the name alone to define (imply) the associated semantics.

• Duplicated text:  Try not to duplicate text where several messages have common elements,
but where this is clearer than (for example) using parameterization, do not be afraid of it if
it makes the specification simpler.

• Number of parameters:  If you have a lot of parameters in a reference name definition,
consider defining an Information Object Class to bundle them into a single parameter, as
described in Section II Chapter 7.

• Web publication:   There are a lot of standards that now have their ASN.1 (or even the
complete specification) on the Web.  An approach some take is to provide hyper-text links
from every use of a reference name to the definition of that name, but of course you need
an ASN.1 tool to generate the HTML for you in this case, or it would be too tedious and
error prone to produce.  You also still need to provide the "ASCII" txt of your specification
for input input an ASN.1 compiler-tool.

Other issues are a little more than "style", or warrant a longer discussion than can be provided in a
bullet.  These are discussed below.

2.3  Your top-level type

You need to very clearly specify what is the
top-level type that defines your messages.
This should be a single type, and will almost
always be an extensible CHOICE type.
Include in this CHOICE all and only those
types that define one of your complete outer-
level messages, not types that might be used in constraints on open types, for example.

You may use the ABSTRACT-SYNTAX notation to identify this top-level type, or you can just
make it very clear by English text and by placing it in a conspicuous position - perhaps in a
module of its own.

A good style makes the specification easy
to read and follow, a bad one makes it
hard.  The actual bits on the line may be
just the same!

This isis your set of messages.  Give it the
importance and prominence it deserves.
All other types are simply there to support
this type.
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ABSTRACT-SYNTAX is not often used in current specifications, partly because it was added to
ASN.1 at a relatively late date, and partly because the associated object identifier value is needed
in communications only if the full OSI stack is being used, but it provides a very clear way of
identifying your top-level types.

As with all cases where you use the extensibility marker, you should think about, and specify
clearly, what you want version 1 systems to do if they receive messages that have been added in
version 2.  If you leave this undefined (implementation-dependent), you have violated one of the
four principles above, and it will probably end up biting you!

2.4  Integer sizes and bounds

This is a detailed issue, and relates not just to the size of
integers but also to the length of strings and to iterations
of SEQUENCE OF and SET OF.

If you are using PER, then it is very important that bounds be formally expressed using the sub-
type notation, as tools will perform encodings according to the bounds.  If you are using BER, then
the issue is not one of encoding, but concerns:

• What size integer should be used in the internal processing of these fields?  (How should
they be mapped into your chosen programming language?)

• If you fail to give any specification, one implementation may map to (and encode and
transmit) 4-octet integers, and another may only support 2-octet integers.  Still others may
increase implementation costs significantly by making strenuous but unnecessary efforts to
handle arbitrarily large integers or arbitrarily long strings.

These are, of course, issues with PER as well, but if you have placed bounds on INTEGER types,
the implementor can deduce the appropriate size of integer to use internally.

If a specification is littered with bounds, particularly if these are set in a single module and
imported, or passed as parameters, it can make the specification (whilst totally clear to a
computer!) less readable by a human being.  An alternative can be to define your own type
INTEGER4,  but then this has to be exported and imported to wherever you want to use it.

ASN.1 tools generally permit global statements on the size of programming language integers that
the ASN.1 INTEGER type is to be mapped into, so that a clear statement in ordinary English that
unless otherwise stated, INTEGER fields are expected to be implemented as 4 octet integers can
suffice.

Notice that there is a certain tension here between specification of bounds to ensure the smallest
possible number of bits on the line when using PER encodings, versus guidance on what to use for
mapping to programming language integers and internal processing.

What is absolutely vital, however, is to make it clear when very large integers (such as those that
appear in signatures in X.509 certificates) have to be supported for the ASN.1 INTEGER type.

We have mainly concentrated on INTEGER in the above, but remember that there are bounds
issues related to all of:

• INTEGER values.

Think about sizes and bounds.
In most cases you don't intend
infinity!
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• Lengths of BIT STRING, OCTET STRING, character string types, and GeneralizedTime.

• Number of iterations of each SEQUENCE OF and SET OF.

And in each case, you have the two main issues raised above:  ensuring optimum PER encodings,
and ensuring interworking.  The latter is arguably the more important.

As ia pointed out in Section II Chapter 7, if you really do decide to leave some bounds (or
anything else) as implementation-dependent, then inclusion of a parameter of the abstract syntax
clearly flags this, and you can then include an exception marker on the bound to specify what a
receiver should do if the two implementation choices are not the same.  If you do take this route, it
would be as well to clearly explain in English text what you intend, your reasons for leaving
implementation-dependence, and when you expect it (or do not expect it) to cause interworking
problems.

2.5  Extensibility issues

We have already mentioned the importance of
considering what extensions you are likely to
require in version 2, and the importance of
inclusion of an ellipsis at appropriate points.

Most people do not use EXTENSIBILITY IMPLIED in the module header, preferring to explicitly
include the ellipsis wherever necessary rather than have over-kill.  This is probably clearer, and
does allow separate exception handling in each case if this is desired (see below).

It is important to recognise what changes you can and cannot make in your version 2 specification
if you want interworking with deployed version 1 systems to be possible without some separate
version negotiation or requiring version 2 implementors to support "dual stacks".

You can only add material where you have put your ellipses in version 1.  Unless you originally
wrote "EXTENSIBILITY IMPLIED", you cannot add new ellipses in version 2 (except in new
types you add as extensions, of course), nor can you remove ellipses.  And you cannot change
existing types, for example from:

                 INTEGER

to

                CHOICE { INTEGER , OBJECT IDENTIFIER }

A last addition to "what you can't do" (but of course this list is not exhaustive!) is optionality:  You
cannot add or remove OPTIONAL or DEFAULT from existing elements (although you can, if you
wish, add another mandatory element at your ellipsis with the same type as an earlier OPTIONAL
element).

Extensibility is important and will work
for you - but only if you obey the rules
when you write version 2!
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2.6  Exception handling

2.6.1  The requirement

It is absolutely vital that when you use ellipsis
you give a clear statement of what behaviour you
expect:

• From version 1 systems if they receive added material.

• How version 2 systems where mandatory fields have been added are to handle messages
from version 1 systems.

The former is the more common case, as version 2 additions tend usually to be marked
OPTIONAL.

2.6.2  Common forms of exception handling

2.6.2.1  SEQUENCE and SET

Consider first added elements in a SEQUENCE or
SET.  It is extremely common here to specify that these are to be
silently ignored by version 1 systems (you then need to consider the
implications of this in your version 2 protocol).

ASN.1 tools are likely to support the removal of such material within the decode routines, so that
the application code is never even aware that it has been hit by a version 2 message, unless action
is taken to specifically indicate to the tool that such material has to be passed up (for example, for
relaying).

2.6.2.2  CHOICE

In the case of CHOICE, the situation is more difficult,
and will depend on the precise interactions that occur
within your protocol.

The simplest case is your top-level CHOICE, where there is probably some defined responses to
top-level messages from an initiator of an exchange, and you can make provision in those
responses for some form of "Sorry, I have not implemented that, I am just a version 1 system"
indication.  (Such provision needs to be made in the version 1 response messages, of course.)

Consider now the case where an extensible CHOICE is embedded in a sequence, and perhaps is an
extensible choice of some character string types which in version 2 has new types added.

It would be possible for a version 1 system receiving a version 2 value of such a type to treat that
value as an empty string - effectively to ignore it, and to say in subsequent processing "No value
available for this field".  Of course, many other actions are possible, depending on your detailed
protocol and the importance of the CHOICE field.  Only you can decide what would be
appropriate.

Version 1 must be told what to do when
hit by version 2 - and you must
remember what you told it to do when
you write version 2!

Not even an exhaustive list of
options.  Certainly not telling you
what to do!  But perhaps enough to
get you thinking.

The simplest cases
first - silently ignore.

A bit more tricky.  And the top-
level CHOICE is often a bit
special.
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2.6.2.3  INTEGER and ENUMERATED

For extensible ranges on INTEGER, or for
extensible ENUMERATIONS, the situation is
not clear-cut.  One option can be to define (in
version 1) a mapping of any new version 2 value
into a specific version 1 value, and specify the
processing of that value as version 1 behaviour.

You need to try to think (when writing version 1) why you might be making the extension in
version 2, and whether this behaviour would work out OK.  You need to re-visit that discussion
when you do eventually make version 2 additions!

Mapping to a version 1 value will not always be right, and the presence of a version 2 value may
need to be carried as an "unknown value" through several stages of further processing (perhaps
even into a database), and its effect on later code which is processing that value should be fully
determined in version 1.

2.6.2.4  Extensible strings

The next case we need to consider are strings
that had a limited (but extensible) maximum
size in version 1, and the size in version 2 was
increased.

Here again we see a conflict between the need to use constraints to get a tight PER encoding, and
what we really want implementors to support in subsequent processing.

It would be possible in this case to say (in version 1) that the constraint determines the maximum
for version 1 senders (it is all that is considered necessary at present), but that version 1 receivers
should be capable of handling in their implementation sizes up to (say) twice the version 1 limit -
and perhaps truncate after that.

But again, depending on the subsequent use and processing of the string field, options such as
treating a version 2 value as "unknown value" can also be appropriate.

2.6.2.5  Extensible bounds on SET OF and SEQUENCE OF

This situation is very similar to the situation with bounds on
strings.

It is clearly possible to require version 1 systems to support greater iterations on receipt.  It is also
possible to specify that they process the iterated material up to some limit of iterations, and then
ignore the rest of the material (equivalent to truncating a string), possibly with some form of error
return.

Bounds on SET OF and SEQUENCE OF iterations are, however, relatively uncommon (with or
without extension markers), so this case does not often arise.  But the reader will be aware from
earlier text that this means potential interworking problems or expensive implementations: few
implementations will truly support an unlimited number of iterations unless told that they are
required to do so.

The problem, however, is that real implementation limits are more likely to be on the total size of
the iterated material when mapped into an implementation programming language data structure,

Another difficult one.  Is there a version
1 value that all version 2 values can be
mapped to without causing too many
problems?  Otherwise you need to look at
just how the integer or enumeration is
going to affect subsequent processing.

Two main options, both obvious:  Require
version 1 to support at the processing level
longer strings,  or truncate.

Very similar to strings,
as you would expect.
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rather than on the number of iterations per se.  This perhaps explains why bounds on iteration
counts are often left unspecified.

2.6.2.6  Use of extensible object sets in constraints

Finally, we consider the case where an extensible
Information Object Set is used as a table or relational
constraint, as in ROSE.  Here it would be common to
have some form of error response such as the ROSE
REJECT message if a version 2 object is received.

But in other cases the option of silently ignoring (perhaps linked to an additional "criticality" field)
the version 2 object, or to treat it as a version 1 object, can also be possibilities.

2.6.2.7  Summary

In the above we have used six main mechanisms:

• Silently ignore.

• Give some form of error response.

• Map to a version 1 value or object.

• Include a special "unknown value" in version 1 and specify its processing.

• Take the added material or unknown choice or value and relay it on unchanged.

• Process as much as possible then truncate (silently or with some form of error response).

Depending on the actual extensible construct, where that construct is used, the semantics
associated with it, and how it affects later (perhaps much later) processing, we can choose one of
these behaviours - or perhaps determine that another application-specific handling is more
appropriate.

2.6.3  ASN.1-specified default exception handling

ASN.1 has been criticised for not specifying
default exception handling behaviour, but I
hope the above discussion of options makes it
clear that good and appropriate exception
handling must be related to the needs of a
specific protocol, and will frequently differ in
different places in the protocol.

It would be positively dangerous to allow specifiers to put in ellipses without thinking through the
implications of different sorts of version 1 exception handling behaviour.  Ellipsis is not an easy
option.  It was introduced originally to ensure that the efficient PER encodings were such that
some interworking would still be possible between version 1 and version 2 systems, but even with
BER, if version 2 additions are made without a clear (earlier) specification of version 1 behaviour,
serious problems result.

Our last example, both the most
complex and the simplest!

Six mechanisms were described
earlier - someone please find another
one and we will have the magic
seven!

"I don't want to mess with this stuff -
why can't I just put in the ellipsis and
invoke default exception handling
procedures?"  "Sorry, it goes with the job
- you have to be responsible for (and
about) exception handling!"
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It may be difficult, it may be a chore, but giving serious consideration to extensibility issues and
the associated exception handling is part of the job of a protocol specifier - the job is more than
just defining a few data structures!

Unfortunately, if a bad job is done on exception handling in version 1, it is quite possibly a wholly
new (and innocent!) group of specifiers producing version 2 that will suffer from the bad version 1
design.  But I am afraid that is life!

2.6.4  Use of the formal exception specification notation

Before leaving this discussion of extensibility, we must make some
mention of the use of the formal exception specification notation
(the notation that starts with "!").

The important thing (emphasised in the previous clause) is that exception handling should be very
clearly stated, and the places in the protocol that particular handling is to be used are clearly
identified.  If there are relatively few uses of ellipsis, and particularly if the required exception
handling is the same for all of them, then there is no real gain in including the formal exception
specification notation, and English language text can suffice.  (This might be the case if the only
ellipses are at the end of SEQUENCE constructs, and the required behaviour in all cases is to
silently ignore added material).

(Actually,  that is not quite true - inclusion of the formal notation tells a reader that exception
handling has been thought about, and that there is somewhere in the text details of required
behaviour, and it is my own personal view that there should be formal exception specification
notation wherever extensibility occurs, but I know that there are others that disagree with me!)

In a protocol with perhaps four or five different exception handling procedures specified (to be
used with different instances of ellipsis, each behaviour applying to several instances of ellipsis),
then use of the formal notation (perhaps simply using "!1", "!2, etc) on each ellipsis can be a
simple and convenient way of identifying clearly which behaviour applies to which.  Something
similar to this is done very effectively in the ROSE protocol (using value reference names for "1",
"2", etc), as described in Section II Chapter 6.

2.7  Parameterization issues

Parameterization is powerful and can be the only way of
achieving certain "re-usability" goals, particularly where one
group provides a carrier protocol and several other groups fill
in the holes in different ways to produce a complete
specification.

But if a parameterized type is instantiated only a limited number of times within a single
specification, then it may be that parameterization is unnecessary, and that the same effect can be
achieved more clearly by using different (but similar) type or value definitions.

Object Set parameters of the abstract syntax are a very good way of providing precise
specifications of "must implement all, but can add" versus "can implement a subset, but can't add"
versus "this is a guide, add or subtract", but are currently unfamiliar to many readers of ASN.1,
and should be accompanied by explanatory text.

To say it formally or
not?  Well, why not?

Just a repetition of what
has been said elsewhere in
this book.
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Integer parameters of the abstract syntax (used in bounds) are also a very good way of clearly
indicating that (for whatever reason), you have chosen to leave implementation-dependent features
in your specification.

But in both these cases, it is essential that exception handling procedures be fully specified, as
discussed earlier.

The use of the {...} notation is a form of parameterization, declaring that the object set to be used
is implementation dependent, and is generally a less clear and precise notation than
parameterization (but there are those that would disagree!).

It is important if this notation is used, that text clearly specifies how it is intended (by whom and
where) for the specification to be completed, and what implications there are on interworking, and
what exception handling is to be applied.  If that is done, this notation can produce a less cluttered
specification than a lot of different parameters (object sets of various classes) being passed from
the top-level type all the way down to where they are being used as a constraint.

Finally, remember (Section II, Chapter 7) that if you have a lot of parameters of a parameterised
type (or other form of reference name), you can reduce them to a single object set parameter by
defining a suitable Information Object Class whose objects carry the complete set of information
for each parameter.  This can be a very useful simplification and reduction of verbosity in your
text.

2.8  Unconstrained open types

Unconstrained open types - elements of sequences looking like,
for example:

                OPERATION.&Type

are syntactically allowed in ASN.1 as part of the Seoul (see Section IV Chapter 1) introduction of
the Information Object Class concept, but that was largely in response to a perceived need to
provide syntax that was semantically equivalent to the old "raw ANY", and I hope the reader (at
least those that have read Section II) by now appreciates that a "raw ANY" (and hence an
unconstrained open type) is a BAD THING.

All that a tool can deliver for this construct is an octet string.  And even the implementor of the
application has no clear indication of where to look to find out the possible types that can occur in
this element, the semantics associated with those types, and which type has actually appeared in a
given instance of communication, that is, how to decode and interpret the octet string.

As a specifier in the years 2000 onwards, please don't use this form, even 'tho' you are allowed to!
Look at the ROSE chapter (Section II Chapter 6) to see how to give a more precise and
implementable specification of these sorts of constructs.  I suspect that if ASN.1 is still going
strong in 2010, forbidding this unconstrained construct may become possible (I am likely to
campaign for it!), provided nobody shouts "1990, 1990!" (again, see Section IV Chapter 1!).

There is only one thing
to say - DON'T!
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2.9  Tagging issues

If you are writing a new specification, you should use
AUTOMATIC TAGS (and - as an aside - not specify
enumeration values for enumerations).  But if you are adding
to an existing specification, life can be more complicated.

Remember that a textually present tag construct automatically disables automatic tagging in a
CHOICE, SEQUENCE, or SET - you are back in control (with IMPLICIT tagging).

If you have good reasons not to use AUTOMATIC TAGS, then you need to have a much greater
understanding of tagging, but should then always use IMPLICIT TAGS in your module header.
Using an explicit tagging environment in modern specifications would be confusing, and you would
either have a very verbose protocol (with BER), or a specification that was littered with the word
IMPLICIT.

If you choose, to specify that certain tags are EXPLICIT, the reasons for this will be obscure to
most readers, and you should indicate in your text why this was done.

There are usually two possible reasons:  in an implicit tagging environment, tags on a choice type
do in fact become explicit tags.  It can help people implementing without a tool if this is made
clear in the specification by writing in the word EXPLICIT (it is redundant to a computer, but may
help a human being).

The other reason is some desire to essentially associate some semantics or categorization with
particular tag values, and to ensure that (in BER) there is a length wrapper round the actual type
being identified.  A similar motivation comes from use of a type constraint on an open-type when
PER is used.  Both of these (rather obscure) devices appear in some security specifications.

Of course, all the above discussion of tagging assumes you have written your type definitions
within the defined ASN.1 module framework, not just written it stand-alone!  I am sure that
readers of this book would never do that!

2.10  Keeping it simple

ASN.1 has a number of powerful mechanisms for
providing clear specifications, but you will often
find people recommending that some of them not be
used in the interests of a simpler specification.

There can sometimes be justification in this, but what appears simple tends very much to depend
on what has been frequently encountered in the past, and new notational constructs may take a
little time to gain a ready acceptance and recognition.  Once understood and recognised, they can
provide a clearer (and hence simpler) specification than the alternative of English text.

There is a second reason sometimes put forward for not using certain constructs, which is that
some current-day tools will accept those constructs, but make no use of them, instead relying on
so-called "compiler directives" (usually a specialised form of ASN.1 comment) that provide the
same effect (and which in some cases pre-date the introduction of the notation into ASN.1).

Notations that fall into this category for either or both reasons are (in no particular order):

There is only one thing to
say:  use AUTOMATIC
TAGS

This is Figure 999 stuff again -
others would have a different list of
what is "not simple", and make
different recommendations!
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• Use of ABSTRACT-SYNTAX.

• Use of parameters of the abstract syntax (variable constraints).

• Use of a type constraint on an Open Type.

• Use of the {...} notation.

• Use of the ! exception specification notation.

I would not recommend avoidance of any of these, but I would caution that where these constructs
(or of any other construct that is not - yet - widely used) are used, it can be sensible to include an
ASN.1 comment, or introductory text in the main body of the specification, saying how and why
the constructs are being used and their precise meaning for this protocol.  That way, such
constructs will become familiar to all, and become "simple"!

3  Issues for implementors

This section is slightly shorter than the "issues for specifiers", but quite a few of the earlier topics
recur here.  The difference is that you (the implementor) are on the receiving end, and if the
specifiers have produced ambiguities or left implementation dependencies, you have to sort them
out!  (Implementors would also be well-advised to read carefully the two earlier parts of this
chapter, as well, of course, as the whole of Section II.)

3.1  Guiding principles

Principles for Internet implementors are often
stated as:

• Strictly confirm to the specification in what you send.

• Be forgiving in what you receive.

That sounds like good advice, and it is often possible to write code that understands and processes
things that are strictly invalid.

This situation arises more often in Internet protocols than in ASN.1-based protocols, because the
use of a text-based format often introduces more redundancy, and hence scope for "understanding"
formally incorrect encodings, and because most Internet protocols rely on this principle to provide
for interworking between version 1 and version 2 of a specification.  The situation will rarely arise
with PER, which has almost no redundancy, and an explicit extensions bit!

With BER you could decide to be forgiving if you got a universal class 16 tag (SEQUENCE) with
the primitive/constructor bit set to "primitive".  Or you could be accidentally forbidding by just not
bothering to write the code to check that bit once you had detected universal class 16!

But if you are forgiving of errors (a primitive sequence, or integers exceeding stated bounds say),
you should consider carefully the effect of being forgiving.  This issue is very strongly related to

Actually, I am not sure I want to
give any!  Implementation is a very
detailed and messy task, particularly
if you don't use a tool!
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extensibility - what you have got is implied extensibility (that you yourself have decided to
introduce), and you are on your own to define the best exception handling procedures.

I would recommend that in the case of ASN.1-based protocols it is rarely a good idea to silently
ignore and process incorrect encodings which you are able to give meaning to (your own
extensions).  You may well choose to go on processing, but the error (with details of the sender)
should at least be logged somewhere, and if the protocol permits it, sent back to the sender in some
form of error message.

3.2  Know your tool

In any development environment there are an immense number of
features in the chose tool that can make an implementors life easier.  It
is important to become familiar with those features/options/parameters
of the tool.

Part of the "quality" aspects of a tool are the ease with which you can acquire an understanding of
the functions it provides, and the detailed syntax needed to obtain those functions.  Of course, you
may regard the actual functions it does provide as more important, but functions that are not
obvious in associated documentation or help files or are not easy to invoke are almost as bad as
missing functions.

3.3  Sizes of integers

This issue has been heavily discussed in the
section for specifiers (which is relevant to
implementors too).  Tools will often give you
control over the length of integer they map to, on
a global basis (usually by command-line
parameters), but will also give an over-ride for
individual fields, usually by "compiler directives"
- special forms of ASN.1 comment.

The better tools will also allow you to specify that certain integer fields are to be treated as strings
to allow them to be arbitrarily large (using dynamic memory allocation) subject to available
memory.

You have two problems:

• Interpreting the intent of the specifier of the protocol.

• Getting your tool to do what you want, if what you want is not part of the formal
specification or contradicts it!

The latter depends on the quality of the tool.  So if your protocol specification says that a field is
"INTEGER (0..7)", but you want it (for ease of programming and/or writing to a database) to be
mapped to a four-octet integer, rather than a two or one-octet integer in the programming language
of your choice, are you able to do it?

The former can be the more difficult problem!  If specifiers have obeyed the guidelines/exhortions
in this area given earlier in this chapter, you should have no problem, but otherwise you may need

This is teaching
grandmother to suck
eggs!

You need to know exactly what was
intended.  With luck, the specification
will tell you.  Otherwise a good guess
is four octets!  But if you guess, cover
your back - raise it as an issue in your
implementatin team.
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to try to guess (from knowledge of the application and from other parts of the specification, or by
enquiry from others (see below)), just what the intention was, or how others are interpreting it.

3.4  Ambiguities and implementation-dependencies in specifications

Don't believe the box!  It is hard to write a
specification that is completely clean (particularly in
the first published specification), and has totally
specified the bits on the line that the implementation
is required to produce under all circumstances.  (I
hate to say it, but if done well, the specifier’s job is
harder than the implementor’s, but in the specifier's
case it is a lot easier to do the job badly and not be
found out!

The most important advice to implementors - and this is very important - is that if you find things
that are not said, raise them as an issue, at least within your team, but preferably with the
specifiers themselves through some appropriate mailing list or group.

Some of you will have heard of the Alternating Bit Protocol.  A very similar protocol was specified
for use over a particular LAN (no names, no pack drill!) in the late 1970s, but the specification did
not say what the behaviour was to be when an ACK with the wrong number was received.  The
implementors decided that the "right" action was to immediately retransmit the last message (with
the same sequence number), trusting the receiver to discard duplicates.  Result:  parasitic
transmissions.  Throughput dropped to half until the load backed off, with every packet being
transmitted twice!

If there is one clear duty on implementors, it is not to take their own decisions when specifications
are unclear!

3.5  Corrigenda

Implementors need to be as much aware as those
in a more managerial capacity of what corrigenda
are around, their status, and how they might
impact the implementation in the future.

If you know something is coming, its arrival can be a lot less painful if it has been planned for!

3.6  Extensibility and exception handling

This text is getting repetitive!  If you are told clearly what the
bits on the wire should be (and what you do in response to
them), and how you are to handle unknown stuff coming in, and
if your decoding tool is sufficiently good and flexible, then there
are no problems.

Otherwise worry!

There won't be any - people working
on protocol specification,
particularly in ISO and ITU-T,
are well-skilled at producing
specifications that are not ambiguous
or have hidden implementation
dependencies!

Just read the advice given at the start
of this chapter on management issues -
worry about corrigenda!

With a good spec and a
good tool, you have no
problems!



140                                                                                                                           © OSS,31 May 1999

3.7  Care with hand encodings

If, for whatever reason, you do not even have access
to a well-debugged library of routines to encode
simple types like INTEGER, etc, let alone access to
a fully-fledged ASN.1 compiler, then you deserve
sympathy!

Producing ASN.1 encodings from scratch, by hand, is not impossible, and in one sense, not even
difficult.  (But it is probably easier to get it right first time with BER than with PER,
unfortunately, due to the large number of optimisations in PER.)  It is just time-consuming and
error prone.

First of all, you need to read Section III rather more carefully than you otherwise would!  Then
you need to spend a lot of time with the actual ASN.1 encoding specification that you are going to
be using.

Second, you will need some sort of ad hoc "line monitor" tool to display what you are producing in
a format that will make it easy for you to check that you are producing what you intended.

And lastly, you really need an ASN.1 tool!  Not one that necessarily runs on your platform (lack of
that is presumably why you are not using a tool), but one that can run on some other
communicating platform, take your output, and display the values it thinks you are transmitting.

Well, that was almost last!  There is nothing like final inter-operability testing with a totally
different complete implementation, particularly if it (and you!) have good error logging of things
you think are erroneous about what you are receiving.

3.8  Mailing lists

There is a mailing list you can use for general ASN.1 enquiries (see
Appendix 5 for a link to this), and many protocol specifications today are
supported by mailing lists, news groups, Web pages, etc.

These resources can be very valuable to you.  (As can people that give ASN.1 and specific-
protocol courses, who are usually willing to leave their e-mail addresses with you and to answer
queries subsequent to their courses.

3.9  Good engineering - version 2 **will** come!

Any protocol you implement will have a version 2 specification that
you or your descendants (team-wise) will have to implement.

All the usual good engineering principles apply to make sure that your code and documentation
enables others to modify your implementation to support the version 2 specification as and when
this is produced.

You will get some hints in the extensibility provisions of version 1 of what areas the specifiers
expect to change.  This can help you to engineer the structure of your implementation to be easily
able to accommodate those changes when they arrive.

No tool?  Life will be hard.  Be
careful.  (You have lost the option
to be good!)

Get tapped in!

Extensibility is not
just for specifiers.
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Just as getting exception handling as right as possible is a challenge for specifiers, getting an
implementation architecture that enables extensions to be easily handled (and providing correct
exception handling in version 1 when there are as yet no version 2 systems around to test against)
is the challenge for the implementor.  As for specifiers - this is part of your job, get it right!

4  Conclusion

And that completes this first Section of the book.  Many of you will be leaving us at this point
(although you may find some parts of Section IV interesting).  I hope you have found it useful.
The more technically-minded will no doubt be proceeding to Sections II and III – read on!
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SECTION II

Further Details
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Chapter 1
The object identifier type

(Or: What's in a name?)

Summary:  The object identifier type, and its associated hierarchical name-space is heavily used
by protocol specifiers that use ASN.1.   It provides a world-wide unambiguous naming scheme
that anyone can use, and has been used to name a very wide range of "things".

Object identifiers are used to identify:

a)  ASN.1 modules

b)  Abstract and transfer syntaxes

c)  Managed objects and their attributes

d)  Components of Directory (X.500) names

e)  Headers of MHS messages (X.400) and MHS Body Types

f)  Banks and Merchants in Secure Electronic Transactions

g)  Character Repertoires and their encodings

h)  Parcels being tracked by courier firms

i)  And many other "things" or "information objects".

1  Introduction

Final discussion of the object identifier
type has been deferred to this "Further
Details" Section, but as a type notation it
is as simple as BOOLEAN.  You just
write:

       OBJECT IDENTIFIER

all upper case.  The complexity arises with the set of values of this type, and with the value
notation.

Object identifiers were introduced intoObject identifiers were introduced into
ASN.1 in 1986 to meet a growing needASN.1 in 1986 to meet a growing need
for a name-space with globally uniquefor a name-space with globally unique
short identifiers which permitted easyshort identifiers which permitted easy
acquisition of name-space by anybody.acquisition of name-space by anybody.



144                                                                                                                           © OSS,31 May 1999

First, we should note that the set of values is dynamically changing on a daily basis, and that no
one computer system (or human-being) is expected to know what all the legal values are.  The
value notation has a structure, and each object identifier value can be mapped onto a sequence of
simple integer values, but these structures do not matter.  Treated as an atomic entity, an object
identifier value (and its associated semantics) is either known to an implementation, or not known.
This is all that matters.

When this type is used in a computer protocol, it is almost always used in circumstances where
there is (or should be!) a clear specification of the exception handling that is required if a received
object identifier value does not match a known value.

Note that all current ASN.1 encoding rules provide a canonical encoding of object identifier values
(no encoder options) which is the same for all encoding rules and is also an integral multiple of
eight bits (an octetstring).  So storing those object identifier values for which the semantics is
known as simple octet strings containing the ASN.1 encoding, and comparing incoming encodings
with these, is a viable implementation option.

We have met values of the type already as a way of identifying modules, and have seen some of the
value notation.  We must now discuss the model underlying such values and the allocation of

 itu-t (0)

iso (1)

joint-iso-itu-t (2)

internationalRA (23)

set (42)

set-vendors
(9)

oss (12)

Figure II-1:  A small part of the object identifier tree

standard (0)

8571

abstract-syntax (2)

identified-organisation (3)

dod (6)

internet (1)

Root
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object identifier name space.

2  The object identifier tree

The underlying concept for object identifiers is a tree-structure, usually drawn as in figure II-1.
Each object identifier value corresponds to precisely one path from the root down to a leaf (or
possibly an internal node), with each component of the value notation identifying one of the arcs
traversed on this path.

The tree has a single root (usually drawn at the top as is the usual way with trees in computing!),
and a number of arcs to the next level (all arcs go just to the next level), providing nodes at that
level.  Each node at the next level has arcs down to nodes at the next level below, and so on.  Both
the depth of the tree and the number of arcs from each node are unlimited.  Some branches of
the tree will be thickly populated with sub-arcs, others sparsely.  Some branches will end early,
others will go very deep.

Every node is administered by some authority.  That authority allocates arcs beneath that node,
leading to a subordinate node, and determining:

• The authority to which delegated responsibility for further allocation (beneath the
subordinate node) has been passed, or an information object which is associated with that
(leaf) node.  (The "information object" concept is discussed further below.)

• A number (unambiguous within all arcs from the current node) to identify the subordinate
node from the current node (zero upwards, not necessarily consecutive).

• Optionally a name to be associated with the arc for use by human beings, and again
providing identification within the arcs from the current node.

The name in the third bullet is required to conform to the ASN.1 rules for a value-reference-name -
that is, it must begin with a lower-case letter, and continue with letters (of any case) and digits and
hyphens (but with no two consecutive hyphens).

When "ccitt" became "itu-t", the ASN.1 standardisers tacitly accepted synonyms for names on
arcs.

Perhaps because of this, many users of ASN.1 now feel that arc names are relatively unimportant
(certainly they don't affect the bits-on-the-line), and that once you have obtained a (numerical)
object identifier allocation, you can use value notation for that object identifier with any names
you choose when you wish to identify yourself, or to publish allocations beneath your node.  Some
would even assert the right to vary the names used in higher-level nodes.

As at mid-1999, this area is in a state of flux.  Earlier views would have said that names were
allocated by the superior of an arc, and were immutable, otherwise there is much scope for human
confusion.  However, the text in the Specification does not entirely support this view, although I
know it was the original intent!

The contrary view (that in published OIDs any name can be used) is supported on two grounds:
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• There are issues of copyright or trademark of names, which superior nodes are often
unwilling to get involved in, so they make no name allocation to their subordinate arcs,
only a number.

• Lower arcs can sometimes be sensitive about appearing to be subordinate to (or part of)
organizations whose names identify arcs between themselves and the root.  In many cases
such an association is at best a loose one, and some organizations will give out object
identifier space to anyone who asks for it.

It is likely that the standard will be clarified to assert not only that names are optional in the value
notation for an object identifier, but also that all such names are arbitrarily chosen by those that
include object identifier values in publications.  However, it would be irresponsible to use
misleading names on arcs, and it is probably best to either omit the name or to use the
generally recognised one from any arcs above that which points to your node.

3  Information objects

NOTE –The term "information object" was used in OBJECT IDENTIFIER text long before the introduction
of the "Informaton Object Class" concepts and (perhaps confusingly)  refers to a more general concept than
the same words used in connection with Information Object Classes.

The term information object used in this context emphasises the fact that object identifiers are
usually used to identify relatively abstract objects, such as ASN.1 modules, the definition of some
operation that a computer can perform, attributes of some system that can be manipulated by a
management protocol, and so on.  In other words, they usually identify some piece of specification
(not necessarily written using ASN.1).  In fact, an organization can be seen as just another type of
information object, and in general a node can both be associated with an information object (of any
sort) and also have further subordinate nodes.

If an organization has been allocated a node, we
say they have been "hung" from the tree.  It is
also possible to "hang" inanimate objects (like
ASN.1 modules) from the tree, once you are the
proud owner of a node!

It is very easy to learn the top bits of the tree, and then to "cheat".  To "steal" an arc from some
node, publishing allocations beneath that.  Don't do it!.  It is not hard to get "legal" object
identifier name space.  But .... see figure 999 .... there are those that advocate a top-level arc
where arcs below that are only unambiguous within a very closed community - anyone can use any
number, and caveat emptor!  What this is really saying is that there is a suggestion that some
Object Identifier values should be context-specific, all such values being identified by a special
top-level arc.  However, this proposal is merely that - a proposal.  Such a top-level arc does not
yet (mid 1999) exist, although the RELATIVE OID type discussed in Section IV perofrms a
similar role.

To identify an organization or object, we use an object identifier value.  At the abstract level, this
is simply a path from the root to the organization or object being identified.  This path can be
specified by giving the number of each arc in turn, together with the names (which may be
empty/non-existent) associated with each of these arcs.  The encoding rules use only the numbers
of the arcs, so non-existent names are not a problem.  The value notation has various forms (see

Distributed registration authoritiesDistributed registration authorities
provide space enough for all.  Haveprovide space enough for all.  Have
you got hung on the Object Identifieryou got hung on the Object Identifier
tree yet?  Get a piece of the action!tree yet?  Get a piece of the action!
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below) that allow both the names and numbers to be specified.  Figure II-1 shows one small part of
the tree, with two branches taken to a depth of 4 and 5 arcs.

4  Value notation

Note that in all the examples that follow, it would be legal to replace any number by a value-
reference name of type INTEGER.  If this value reference name had been assigned the value given
in the examples below, then the resulting object identifier value is unchanged.  It is, however, not
common practice to do this.

The value notation consists of a series of components, one for each arc leading to an identified
object.  In figure II-1 we can identify the objects at the bottom of the figure by:

               {iso standard 8571 abstract-syntax (2)}
and
            {iso identified-organization dod (6) internet (1) }
and
   {joint-iso-itu-t  internationalRA (23) set (42) set-vendors (9) oss (12) }

or equivalently, but less readably, by:

           {1  0  8571  2}
and
           {1  3  6  1}
and
           {2  23  42  9  12}

The first value names an information object in the ISO Standard 8571, the second gives object
identifier space to the IETF, and sub-arcs of this are heavily populated in the Internet specification
for SNMP (Simple Network Management Protocol).  The third value gives object identifier name
space to Open Systems Solutions, a vendor associated with the Secure Electronic Transactions
(SET) consortium.

It is always permissible to use only numbers (but not common).  In one case "8571" an arc has a
number but no name, so the number appears alone, not in brackets.  In most other cases, the name
is given followed by the number in brackets.  (The number is required to be in brackets if both are
given).  It is only for the top arcs (iso, standard, joint-iso-itu-t) that the numbers can be omitted, as
these are "well-known" arcs, with their numerical values listed in the ASN.1 specification pre-
1988 (they are now listed in X.660/ISO 9834-1).  Whilst seeing specifications with these top-level
numbers omitted is quite common, it is becoming increasingly the practice, particularly as ASN.1
is now being used by organizations only loosely associated with ITU-T or ISO (or not associated
at all), to list the numbers in parenthesis for all arcs.

Notice that this value notation does not contain commas between components.  This is unusual for
ASN.1 value notation, and was done to promote easy human readability, particularly of the early
components with the numbers omitted.

There is one other facility available when specifying object identifier values.  We have already met
it in figure 21, where we chose to define an object identifier value "wineco-OID" with five
components, and then use that name immediately after the curly bracket in our IMPORTS
statement.  (It is only allowed immediately after the curly bracket).  This is something that is quite
commonly done, but note that it is not allowed for the module identifier, as the scope of reference
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names in the module has not yet been entered.  Some specifications will define a large number of
object identifier values, particularly in association with the definition of information objects, and a
very common style is to assign these values in a single module to a series of value-reference-
names, exporting those names.  They will then be imported and used as necessary in other
modules.

5  Uses of the object identifier type

It is a common occurrence for a protocol to be written where there is a need to carry identification
of "things".  These "things" may be:

• what it is:

− operating on;

− ordering;

− reporting on;

• information that it is carrying;

• identification of specific actions to be undertaken on receipt of a message;

• components of some more complex structure, such as Directory (X.500) names;

• etc, etc.

Some existing uses are listed in the "Summary" at the start of this chapter.

We use the term "information objects" for "things", because at the end of the day a physical "thing"
is identified by some piece of text or specification - a piece of information, and sometimes the
"thing" is not a physical object but is a rather abstract "thing" such a an organization, but the
"thing" is still identified by some specification - a piece of information.  What is really being
identified by an object identifier value is that more elaborate and precise specification of the thing
- an "information object", rather than the "thing" itself, but the two are in 1-1 correspondence, so
there is really no distinction.

Where there is a need for the identification of an information object:

• which must be world-wide unambiguous;  and

• where allocations of identification to such information objects needs to be widely available
to almost anybody;  then

use of ASN.1 object identifier values is a good way to go.

In general, almost all users of ASN.1 have found the need for a naming scheme to identify
information objects relevant to their application, and have chosen to use object identifier values for
this purpose, and to include in their protocol fields that are OBJECT IDENTIFIER types to carry
such values.  The OBJECT IDENTIFIER type, and its associated naming structure is important
and heavily used.
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Chapter 2
The character string types

(Or: Overcoming Genesis Chapter 11!)

Summary:  This chapter discusses the complete set of character string types:

• NumericString

• PrintableString

• VisibleString (ISO646String)

• IA5String

• TeletexString (T61String)

• VideotexString

• GraphicString

• GeneralString

• UniversalString

• BMPString

• UTF8String

It describes their value notations, and gives recommendations on their use.

Discussion of the character string "hole" type - CHARACTER STRING - is deferred until Chapter
7 of this section.
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1  Introduction

Here we will describe all the available (up to 1988)
character string types apart from "CHARACTER
STRING", which is described later under "Hole
Types".  For a full understanding of these types, the
reader must be aware of the various approaches that
have been taken to character encoding schemes for
computers generally over the years.  A full
discussion of this, and of the historical development
of support for character string types in ASN.1, is
given in Section IV.  Sufficient information is given here for the writing and understanding of
ASN.1 specifications.  If you want to skip some of this material, just go down to the section
"Recommended character string types" (clause 13), and look at the paragraphs about the ones
mentioned there.  That is probably all you need!

Character string types are considered by some to be unnecessary (won't a good old OCTET
STRING do the job?).  (See figure 999!).  Yes, an OCTET STRING could be used.  But you
would then need to spell out clearly the precise encoding to be used, and to make clear to
implementors the range of characters that were to be supported.  Moreover, that specification
would be in normal human-readable text or in ASN.1 comment,  could not be understood by any
tool assisting an implementation, and (as it is new text) would be a potential source of ambiguity
and interworking problems.

The types provided in ASN.1 cover the spectrum from the simplest requirements to the most
ambitious.  In general, if your character set requirements for a particular string are restricted, use
the more restricted character set types to make this clear, even if the encoding is the same as for a
type with a wider character repertoire.

Note also that some of the latest character string types can only easily be supported by a
programming language (such as Java) that uses 16 bits per character, supporting the Unicode
encoding scheme.  (This scheme is fully described in Section IV).  Increasingly, however, (late
1990s) programming languages and operating systems and browsers and word processors and ....
are all providing Unicode support, either for the 16-bits-per-character repertoire, or in some cases
for a 32-bits-per-character repertoire.

This does not mean that if the application designer has specified a field as (for example)
UTF8String or UniversalString, you cannot implement that protocol in a language (or operating
system) that does not have Unicode support, it just means that it may be harder work!

2  NumericString

Values of the type are strings of characters containing the digits zero to 9 and space.  The BER
encoding is ASCII (8 bits per character), and the PER encoding is 4 bits per character unless the
character repertoire has been further restricted by a "permitted alphabet constraint" (see Chapter 3
following), when it could be less.

And God was displeased with theAnd God was displeased with the
people of Babel for building theirpeople of Babel for building their
tower unto heaven, and sent atower unto heaven, and sent a
thunderbolt and scattered thethunderbolt and scattered the
peoples to the corners of the worldpeoples to the corners of the world
giving them different languages.giving them different languages.
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3  PrintableString

Values of the type are strings of characters containing an ad hoc list of characters defined in a
table in the ASN.1 specification, and copied here as Figure II-2.

This is basically the old telex character set, plus the lower case letters.  You would probably tend
not to use it today unless you had an application likely to be associated with devices with limited
character input or display capabilities.

4  VisibleString (ISO646String)

The name "ISO646String" is a deprecated synonym for VisibleString (deprecated because the name
contains a Standard number which is not in fact used in its definition, post 1986!), but you may
encounter it.  The character repertoire is described in the very old ISO Standard ISO 646, which
laid the foundation for the better-known ASCII.  Whilst this character repertoire was originally

Name Graphic

Capital letters A, B, ... Z

Small letters a, b, ... z

Digits 0, 1, ... 9

Space (space)

Apostrophe '

Left Parenthesis (

Right Parenthesis )

Plus sign +

Comma ,

Hyphen -

Full stop .

Solidus /

Colon :

Equal sign =

Question mark ?

Figure II-2:  Characters in PrintableString
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strictly not ASCII, but rather "the International Reference Version of ISO 646", it was widely
interpreted by all ASN.1 users and implementors as simple plain ASCII, but printing characters
plus space only.  The original definition was by reference to the ISO 646 Standard, but post-1986
the definition was formally "Register Entry 2 (plus space) of the International Register of Coded
Character Sets to be used with Escape Sequences".  (See Section IV for more detail).  This was
changed in 1994 to reference "Register Entry 6", which is strict ASCII, recognising the normal
interpretation by ASN.1 users.  The coding in BER is 8 bits per character, and it is the same in
PER if there is no subtyping applied to the type to restrict the range of characters (if there is, it
could be less).

5  IA5String

"International Alphabet 5" is specified in a very old ITU-T Recommendation, which again was the
original reference for this type.  Again, this was close to ASCII (ASCII was a "national variant" of
International Alphabet 5, but the type is widely assumed to mean simply "the whole of ASCII,
including control characters, space, and del".  The precise reference today is "Register Entries 1
and 6 (plus space and delete) of the International Register of Coded Character Sets to be used with
Escape Sequences", which is strict ASCII. The encoding is again 8 bits per character (possibly less
in PER).

6  TeletexString (T61String)

Again, the synonym is deprecated.  Originally CCITT Recommendation T.61 specified the
character repertoire for Teletex, and was referenced by the ASN.1 specification.  (Today the
corresponding specifications are in the ITU-T T.50 series.)  The precise definition of this type has
changed over time to reflect the increasing range of languages supported by the ITU-T teletex
Recommendations.  Today it includes Urdu, Korean, Greek, .... .  Formally, it is Register Entries
6, 87, 102, 103, 106, 107, 126, 144, 150, 153, 156, 164, 165, 168, plus SPACE and DELETE!
The encoding of each register entry is 8 bits per character, but there are defined escape codes (the
ASCII "ESC" encoding followed by some defined octet values) to switch between the different
register entries.  It is quite hard to implement full support for this character string type, but it is
extensively used in the X.400 and X.500 work.  The character repertoires referenced have
increased with each new version of ASN.1, and may continue to do so, under pressure to maintain
alignment with the ITU-T Teletex Recommendations, which themselves are under pressure to
support more and more of the world's character sets.  This makes this type effectively an open-
ended set of character repertoires, and would make any claims of "conformance" hard to define or
sustain.  Today, it is best avoided, but it was popular in the mid-1980s, and you will often
encounter it.

7  VideotexString

A little-used character string type that gives access to the "characters" used to build crude pictures
on videotext systems.  Typically a "character" is a 3x2 array, with each cell containing either a
foreground colour or a background colour (determined by transmission of one of about five control
characters), giving 64 different printing "characters" that can be used to build the picture.
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Formally, it is again a list of 17 register entries, partially overlapping those specified for
TeletexString.

8  GraphicString

This was a popular string type in the main OSI (Open Systems Interconnection) standards
produced during the 1980s, and allowed any of the Register Entries in the International Register
for printing characters (but not the control character entries).  In its hey-day the International
Register had a new entry added about every month or so, and eventually covered most of the
languages of the world.  If this text is used in an academic course, an interesting student exercise
would be to discuss the implementation implications of using such a wide (and ever-expanding!)
type definition.  Since the development of ISO 10646/Unicode, additions to the International
Register have become much less common, and coding schemes based on this Register can be
regarded as obsolescent.

9  GeneralString

This is similar to GraphicString, except that the register entries for control characters (of which
there are many) can also be used.

10  UniversalString

This is a string type that was introduced into ASN.1
in 1994, following the completion of the ISO
Standard 10646 and the publication of the Unicode
specification (see Section IV for more information on
ISO 10646 and Unicode).  The ISO 10646 standard
(and the ASN.1 encoding in BER) envisages a 32-bits
per character encoding scheme, sufficient to cover all the languages of the world without using
"combining characters", with a fair bit left over for the languages of Mars and most of the rest of
the undiscovered Universe!  It is only this type and UTF8String (see below) that can cover all the
characters for which computer encodings have been defined (not quite true - there are some weird
glyphs in the International Register that have not yet been put into ISO 10646).  This type has not,
however, proved popular among ASN.1 users.

11  BMPString

The name comes from the "Basic Multilingual Plane" (BMP) of ISO 10646, which contains all
characters with any commercial importance (all living languages), and can be encoded (and is in
BER) with a fixed 16-bits per character.  Whilst the formal ASN.1 definition references ISO
10646, the character set is the same as that defined in and more commonly known as the Unicode
Standard produced by the Unicode Consortium.  (Search the Web if you want to know more about

UNICODE is supported byUNICODE is supported by
UniversalString andUniversalString and
BMPString and byBMPString and by
UTF8String.UTF8String.
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Unicode, oar see Section IV).  The fixed-size representation of 16-bits per character, holding
Unicode characters, is becoming common in revisions of programming languages and operating
systems, and is rapidly replacing ASCII as the default encoding for manipulating character data.
This ASN.1 type was widely used during the mid-1990s by those application specifications
upgrading to the 1994 ASN.1 specification.  (It was not present in ASN.1 pre-1994).

12  UTF8String

UTF8String is the recommended character string type for full internationalization without
unnecessary verbosity.

This encoding scheme was developed in the mid-1990s and the type was added to ASN.1 in 1998.
The acronym stands for "Universal Transformation Format,  8 bit", but that does not matter much.
Formally, the character repertoire is exactly the same as UniversalString - all defined characters
can be represented.

UTF8 is, however, a variable length encoding for each character, with the rather interesting
property that (7-bit) ASCII characters encode as ASCII - in a single octet with the top bit set to
zero, and none of the octets in the representation of a non-ASCII character have the top bit set to
zero.  ASCII is paramount!  Most European language characters (like c-cedilla or u-umlaut) will
encode in two octets, and the whole of the Basic Multi-lingual Plane, together with all characters
identified so far, encode in at most three octets per character.  If we ever do populate the whole of
the ISO 10646 32-bit space, then UTF8 would use a maximum of six octets per character.

Whilst use of a fixed 16-bits per character is becoming the norm for operating system interfaces
and programming languages, use of UTF8 for storage and transmission of character data is the
way everybody is going (as at mid-1999).  As an implementor of an ASN.1-based application, you
can expect that if you use an ASN.1 tool with a language that supports Unicode, the UTF8
transformations will be applied by the tool, invisibly to you, as part of the ASN.1 encode/decode
process, giving you a simple 16-bits (or 32-bits) per character to work with in memory, but with
an efficient transfer syntax.

13  Recommended character string types

So having read right to the end, you can now
make an informed judgment on which
character string types to use!  Here it is
assumed you are writing a new specification
and will conform to the post-1994 ASN.1, and
hence can use all the facilities in the latest
ASN.1. (A fuller discussion of the pre-
1994/post-1994 issues appears in Section IV).

If, for the expected implementation of your
application, the input/output devices involved
are likely to be able to handle the full Unicode
character set, and you want to be as general as possible, then UTF8String is for you!  The earlier
UniversalString and BMPString offer few if any advantages, and should be ignored.  If, however,

For full internationalization, useFor full internationalization, use
UTF8String.  Otherwise use the mostUTF8String.  Otherwise use the most
restrictive character string type availablerestrictive character string type available
for your needs.  If input/output devicesfor your needs.  If input/output devices
restrict your application, considerrestrict your application, consider
NumericString or PrintableString orNumericString or PrintableString or
VisibleString or IA5String.VisibleString or IA5String.
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input or output is likely to be done on more limited devices, then you may wish to consider a more
restricted character string type.

GeneralString and GraphicString, based on the International Register are obsolete, and there is no
case for using them in new specifications, although they were important in the 1980's.

The same remark applies to TeletexString (T61String) and VideotexString:  you are unlikely to
want to use these unless you have strong links to the associated ITU-T Recommendations.

If your application does require use of input/output devices that may only be able to support a
limited range of characters, then you must seriously consider using only NumericString,
PrintableString, VisibleString (ISO646String), or IA5String.  NumericString is very limited, and
is not fully international, but is better from the internationalization point of view than the other
three (arabic numbers are accepted over more of the world than the full range of ASCII
characters).  PrintableString has the slight merit that it is hard-wired into ASN.1, so there can be
no misunderstandings about what characters are included, but it is essentially a cut-down ASCII
with few advantages over ASCII.  If you want full ASCII, then you need VisibleString (no control
characters) or IA5String (includes control characters).  This will be fine for English-speaking
communities, and is livable-with for a number of other European languages, but is generally
deprecated in any sort of international specification.

Ultimately, the choice has to be yours as the application designer - ASN.1 merely provides the
notational tools, but you probably want to restrict your choice to NumericString, PrintableString,
VisibleString, IA5String, and UTF8String.  You should use UTF8String if input\output devices are
not likely to play a strong determining role in implementations of your application (for example, if
all associated input\output will be using general-purpose computer software for keyboard input
and display).

14  Value notation for character string types

This book gives full coverage of the ASN.1
notation, but there are a number of parts of
that notation that you will rarely need or
encounter.  Value notation for character
strings is in that category, and value notation
for control characters or characters
appearing in several languages is even less
commonly needed.  Skip-read this section
and return to it later if you find you need it!

The only value notation for character string types pre-1994 was to list the characters in quotation
marks.  This was fine for simple repertoires like PrintableString, but did not enable control
characters to be specified for a type such as IA5String, and gives ambiguity problems in printed
specifications with strings such as

                "HOPE"

if the repertoire includes Cyrillic and Greek as well as ASCII!  (Each of these four glyphs appears
as a character in more than one of these alphabets).  There are also potential problems in printed
specifications in determining what white space in character string values is intended to represent
(how many spaces, "thin" spaces, etc).

Names exist for all UNICODENames exist for all UNICODE
characters, and can be used in ASN.1characters, and can be used in ASN.1
to give precision to the specification ofto give precision to the specification of
character string values without concerncharacter string values without concern
about ambiguity of glyphs or theabout ambiguity of glyphs or the
character set available on yourcharacter set available on your
publication medium.  Cell references canpublication medium.  Cell references can
also be used.also be used.
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Post 1994, two additional mechanisms are available for defining a character string precisely, both
of them based on listing the characters individually.

The notation is illustrated by the following:

          my-string1 UTF8String ::= {cyrillicCapitalLetterEn,
                                     greekCapitalLetterOmicron,
                                     latinCapitalLetterP,
                                     cyrillicCapitalLetterIe}

          my-string2 IA5String ::= {nul, soh, etx, "ABC", del}

          my-string3 UTF8String ::= { {0, 0, 4, 29},
                                      {0, 0, 3, 159},
                                      {0, 0, 0, 80},
                                      {0, 0, 4, 21} }

          my-string4 IA5String ::= { {0, 0},
                                     {0, 1},
                                     {0, 3},
                                     "ABC",
                                     {7, 15} }

As you will guess, my-string3 is the same as my-string1 (and could be printed as "HOPE"!), and
my-string4 is the same as my-string2.  The last two notations reference the cells (giving group,
plane, row, cell) of ISO 10646 or of ASCII (formally, of Register Entry 6 of the International
Register) (giving table column as 0 to 7 and table row as 0 to 15).

The last two notations can be used freely, but the character names used in the first two notations
are only available if they have been imported into your module from a module which is defined
(algorithmically) in the ASN.1 specification by reference to character names assigned in ISO
10646 (and Unicode).

To make the above value notations valid, you need the following IMPORTS statement in your
module:

        IMPORTS cyrillicCapitalLetterEn, greekCapitalLetterOmicron,
                latinCapitalLetterP, cyrillicCapitalLetterIe,
                nul, soh, etx, del FROM
                ASN1-CHARACTER-MODULE
        {joint-iso-itu-t asn1(1) specification(0) modules(0) iso10646(0)};

You will also note that you can mix the different notations - character names, quoted strings, cell
references - within a single value definition.

The above works, but if your "HOPE" was actually intended to be the ASCII characters, there is a
less verbose method available post-1998.  You can simply write:

        my-string5 UTF8String(BasicLatin)::= "HOPE"

where "BasicLatin" is imported from the ASN.1 module.  You can then, in a SEQUENCE say,
have an element:

        string-element UTF8String DEFAULT my-string5
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What we are doing here is fairly obvious - we are "qualifying" the UTF8String type to say that we
are only using the BasicLatin (ASCII) part, so the "HOPE" is now unambiguously the ASCII
characters.  Note that in the SEQUENCE, we use the full UTF8String type.  This rather simple
notation rests on two powerful and general concepts, those of subtyping and of value mappings.
Subtyping is the definition of a new type which contains only a subset of the values of the so-
called parent type.  In this case the parent type is "UTF8String", and we are using a subtype of
that (defined in the ASN.1 module) called "BasicLatin" to subtype it here.  The above example
could actually have been written:

        my-string5 BasicLatin ::= "HOPE"

which perhaps makes it clearer that "my-string5" is latin characters, but makes it less clear that it
can be used as a DEFAULT value for UTF8String (although it still can).  Subtyping is discussed
in more detail in the next chapter.  Whichever way "my-string5" is defined, its use as a default
value for UTF8String is dependent on a general concept in ASN.1 that if something is a value-
reference-name of a subtype of some type, it can also be used as a value-reference-name for a
value of the parent type, and in some cases of other "similar" types.  This is the value mapping
concept in the ASN.1 semantic model (introduced briefly in Section I and discussed more fully in
Section IV), and in this case allows "my-string5" to be used not just as a value for UTF8String,
but also, should you wish it, as a value for PrintableString and VisibleString.

15  The ASN.1-CHARACTER-MODULE

This module has been mentioned above.  It provides value-reference-names for all the ASCII
control characters (explicitly listed), and for all the characters in Unicode/ISO 10646.  The
character names listed in the ISO 10646 Standard (and Unicode) are given in all upper case with
spaces between words.  To convert to an ASN.1 name you keep the upper case letter for the first
letter of every word except for the first name, change all other letters to lower-case, then remove
the spaces!  This produces the names we used above, and also the rather long name:

        cjkUnifiedIdeograph-4e2a

for the Chinese/Japanese/Korean (CJK) character which looks (to a Western eye!) like a vertical
bar with a caret over it, and is named in ISO 10646 as "CJK Unified Ideograph-4e2a"..

ISO 10646 also defines 84 collections - useful sets of characters.  These names are mapped into
ASN.1 names for subtypes of UTF8String by the same algorithm, except that as they are types
(sets of string values, not single character values), they keep their initial upper-case letter.  Here
are a few examples of the names that are available for import:

        BasicLatin
        Latin-1Supplement
        LatinExtended-A
        IpaExtensions
        BasicGreek
        SuperscriptsAndSubscripts
        MathematicalOperators
        BoxDrawing
        etc
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16  Conclusion

The ASN.1 character string types have evolved over time as the character set standards themselves
have changed, and as input/output devices and packages have become more capable of handling a
wider and wider range of characters.

Partly to provide a mechanism that would accommodate any character repertoire and encoding
scheme, the CHARACTER STRING hole type was introduced.  This is described in a later
chapter.

Mechanisms were also added over time to provide for a more precise tailoring of character
repertoires to user's needs, and to provide a precise and unambiguous value notation for character
strings which does not depend on (the perhaps restricted set of) glyphs available for any printed
ASN.1 specification, or on the character repertoire (such as perhaps only ASCII) available for any
machine-readable ASN.1 specification.

The end result is a perhaps confusing, but wide-ranging and up-to-date set of types for character
string fields.
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Chapter 3
Subtyping

(Or: Tighten up your data types!)

Summary:  This chapter describes the ASN.1 subtype notation that allows the precise definition of
the set (subset) of values that you wish to allow for a type.  You can, for example, specify:

• the range of an integer;

• minimum and/or maximum length of a string;

• the precise characters wanted from a character set;

• minimum and/or maximum number of iterations in a SEQUENCE OF or SET OF.

The full notation has considerable power and flexibility, but the above examples are the ones most
commonly met.

1  Introduction

The ASN.1 "subtype notation" is very
powerful, and it would be nice to say that it
is one of the things that makes ASN.1 great!
However, whilst the simpler instances of its
use (length limits on strings, limits on
iterations of sequence-of, ranges on integers)
are common, and it is important that you use
them where you can, some of the other
features of this notation are seen less often,
and are perhaps less important.

Note also (before reading on - or skipping!) that flexibility in subtype notation was considerably
enhanced in 1994, so some of the examples given below would not be legal pre-1994.  Check the
actual ASN.1 specification!

We have very briefly met subtyping in figure 13, where (omitting the distinguished values) we had
a sequence element of:

                no-of-days-reported-on  INTEGER (1..56)

restricting the range of the integer field to the values 1 to 56.

Customise your types to just the preciseCustomise your types to just the precise
values you need - it can often reduce thevalues you need - it can often reduce the
number of bits-on-the-line by more thannumber of bits-on-the-line by more than
a factor of two (if PER is in use), anda factor of two (if PER is in use), and
gives clear guidance to implementors forgives clear guidance to implementors for
memory allocation decisions, such as thememory allocation decisions, such as the
size of integer to use.size of integer to use.
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In the pre-1994 ASN.1, this notation in round brackets was regarded as producing a new type
consisting of a subset (hence subtyping) of the values in the original or parent type.  Post-1994,
the view-point tends to be more that we are constraining the integer to be in the range 1 to 56.
Why the difference?  Well, post-1994 a number of other constraint mechanisms were introduced
(also within a pair of round-brackets following the type being constrained), but more importantly,
focussing on the notation as a constraint raises the question "And what if I get incoming material
that violates the constraint?".  The general issue of constraints (and associated exception handling)
is left to Chapter 7 of this section, but here we will fully discuss the simple subtype notation, first
introduced into ASN.1 in 1986.

When subtyping was introduced into ASN.1, the Basic Encoding Rules were not changed.  They
were TLV-based, and using subtype information to, for example, eliminate the "L" part, would
have destroyed the structure of the encoding.  So up to 1994, application of subtyping merely
helped the writer of application-code - it did not affect encoding, or the number of bits-on-the-line.
With the introduction of the Packed Encoding Rules (PER), the encoding is affected by subtyping
(particularly of integers).  To gain maximum benefit from PER, application designers should
include range information (and length constraints on strings, and iteration constraints on set-of and
sequence-of) whenever they reasonably can.

In PER there is the concept of "PER-visible constraints" - things that affect the encoding.  Not all
subtyping constructs are PER-visible (and in particular inner subtyping - see below - is never
PER-visible for good reasons).  It is tempting to suggest (see figure 999 again!) that you can
ignore - don't learn about, don't use - any subtyping notation that is not PER-visible, but this
would be bad advice, as a new super-PER could at some stage be defined that would take account
of the more complex constraints.  The right advice is:  "If you intend your applications to use only
a subset of the values of some type, then try to express that formally using the ASN.1 subtype
notation, not just as comment."

2  Basic concepts and set arithmetic

Before looking at the different forms of subtype
notation, it is important to recognise that subtype
notation (like tagging - see the next chapter) is
formally producing a new type.  So wherever
ASN.1 requires/allows type-notation, you can
instead write:

        type-notation  subtype-notation

although the "subtype-notation" has to be one of the allowed notations for the parent type given by
"type-notation".  "subtype-notation" always begins and ends with round brackets.

This idea can be recursively applied.  So you can, for example, write:

   My-string1 ::= PrintableString (SIZE (1..10)) (FROM ("A" .. "Z"))

This first defines a type which is PrintableString restricted to strings between and 1 and 10
characters,  then further restricts this to strings that contain only the characters "A" to "Z".

There is another subtype notation that can do the same job in one go using set arithmetic.   We can
write:

The subtype notation is applied to aThe subtype notation is applied to a
type (the parent type) and produces atype (the parent type) and produces a
new type that contains a subset of thenew type that contains a subset of the
set of abstract values in the parentset of abstract values in the parent
type.type.
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        My-string2 ::= PrintableString
                      ( SIZE (1..10) INTERSECTION FROM ("A" .. "Z") )

In this notation, the "SIZE (1..10)" selects the set of all values of PrintableString that have lengths
between 1 and 10 inclusive.  The "FROM ("A" .. "Z")" selects all values of PrintableString which
contain only the characters "A" to "Z".  The mathematical intersection of these sets gives exactly
the same set of PrintableString values as was specified by My-String1 above.

In general, the construction in round-brackets contains a number of terms separated by the words
"INTERSECTION", "UNION", "EXCEPT", with the "normal" precedence (INTERSECTION
binds tightest, EXCEPT binds least tightly).  Each term formally identifies a set of values of the
parent type (PrintableString in the case above), and normal set arithmetic is applied to determine
which values are in the resulting new type.

(As an aside, it is illegal ASN.1 if the set-arithmetic results in a type being defined that has no
values!).

Note also that, to avoid confusion for the reader on precedence

                INTEGER ( A EXCEPT B EXCEPT C )

is disallowed, and has to be written as:

                INTEGER ( ( A EXCEPT B ) EXCEPT C )
or
                INTEGER ( A EXCEPT ( B EXCEPT C ) )

whichever was intended.   There is no equivalent restriction for UNION and INTERSECTION,
because if both the "EXCEPT"s above are replaced by "UNION" (or by "INTERSECTION"), the
two different bracket patterns produce identical resulting sets.

It is also possible to write

                INTEGER ( ALL EXCEPT (1..20) )

with the obvious meaning.  ("ALL" can only be followed by "EXCEPT").

A more complex example (exercise for the reader - find a real-world example where this sort of
construction would be useful!) would be:

         My-string3 ::= PrintableString
                   ( SIZE (1..10) INTERSECTION FROM ("A" .. "Z")
                     UNION
                     ("yes" UNION "no" UNION maybe)
                     EXCEPT
                     "A" UNION B)

I think you can work out what that means, but if not, come back to it when you have read what
follows!  Note that the absence of quotation marks around "maybe" and "B" above was not a typo!
"maybe" is assumed to be a value-reference-name for a value of type PrintableString (assigned
elsewhere in this module), and B is assumed to be a type-reference-name for a subtype of
PrintableString (also assigned elsewhere in this module)!  Remember that wherever explicit value-
notation for a value is allowed, a value-reference-name is also allowed (provided it refers to a
value of the parent type), and (less obviously perhaps) wherever a subset is needed for set
arithmetic, a type-reference-name can be used (provided it refers to a subtype of the parent type).
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The alert-alert-reader (!) may be beginning to ask what the exact rules are about the way a value-
reference-name or type-reference-name has to be defined in order to be legal in some set-arithmetic
with a particular governor (parent type).  This is covered in the description of the ASN.1 Semantic
Model in Sectin IV, but it is sufficient to note for now that if it would make sense to a human
reader it is almost certainly legal!

Note that value-notation for a type defined using subtype-notation is not affected by that notation -
it remains the normal value notation for the parent type.

One final global comment:  the word "INTERSECTION" can be replaced by the "caret" symbol:
"^", and the word "UNION" by the "vertical-bar" symbol: "|", but you are recommended not to mix
and match in any one application specification!  For me, ASN.1 specifications tend to be quite
verbose anyway - longish names are common - so I prefer the words!

What then are the basic terms that we can use - either as stand-alone subtype constraints in round
brackets, or as part of a possibly complex set-arithmetic expression, and what set of values do they
identify?

We treat each possibility below.  Note that in some cases the clause has "subtyping" or "subtype"
in its heading, and in other cases the word "constraint" is used.  This reflects the terms used in the
ASN.1 specification itself, and reinforces the point that for most purposes the two words are
interchangeable.

3  Single value subtyping

This can be applied to any parent type.  (Remember that there is value notation for any type we
can define in ASN.1).  We just list the permitted value!  Normally this would be accompanied by
use of vertical bar or UNION.  So:

        Yes ::= PrintableString ("Yes")
and
        Yes-No ::= PrintableString ("Yes" | "No")

are examples that use single value subtyping.  The set of values identified by each use of single
value subtyping is just that single value identified by the value notation.

4  Value range subtyping

This can only be applied directly to integer and real
types, but the same construction following the word
"FROM" is used to restrict the set of characters
that are permitted in some character string types
(see "permitted alphabet" below).

The end-points of a range of values are given, and the set of values identified by the notation is
precisely those from one end-point to the other (including the end-points).  This is the notation we
encountered earlier, and which is often seen to constrain integer values:

                Days-reported-on ::= INTEGER (1..56)

Value range subtyping isValue range subtyping is
frequently applied to specify thefrequently applied to specify the
range of integer values.range of integer values.
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As usual, intersections and unions of these constraints are possible, but are rarely seen.

5  Permitted alphabet constraints

This is a constraint which can only be
applied to the character string types (not
including the type "CHARACTER
STRING").

In its simplest form this constraint is the
word "FROM" followed by a character
string containing a set of permitted
characters.  Thus:

        String-of-vowels1 ::= PrintableString ( FROM ("AEIOU") )
or
        String-of-vowels2 ::= PrintableString ( FROM ("AEIOU")
                                                UNION
                                                FROM ("aeiou") )

would be possible examples.  The opening bracket following "FROM" may appear unnecessary
and looks cumbersome, but the syntax definition allows a fully general constraint following
FROM, so

        String-of-vowels3 ::= PrintableString ( FROM ("AEIOU"
                                                       UNION
                                                      "aeiou") )

is also permitted.

The constraint following "FROM" is required to be one that could be directly applied to the parent
type to produce a set of string values (call this the defining set of string values (a term used only
in this book).  The effect of "FROM" is to allow (in the subset of string values selected by
"FROM") all strings of the parent type which contain (only) any of the characters in any of the
string values in the defining set.

An exercise:  read this definition carefully, then answer the question "Are String-of-vowels2 and
String-of-vowels3 equivalent definitions?".  Read on when you have your answer!

We reason it through.   With "String-of-Vowels2", we first define two sets of PrintableString
values.  One is all strings made up of upper case vowels only and the other is all strings made up
of lower case vowels only, and we take the union of these two sets.  Thus the end result allows
strings containing only vowels, but each string must be entirely upper case or entirely lower case.
With "String-of-Vowels3", we first produce a set with just two string values, each of five
characters:  "AEIOU" and "aeiou".  We then apply "FROM" to this set, allowing as the end result
strings made up of arbitrary combinations of upper and lower case vowels, so "String-of-Vowels2"
and "String-of-Vowels3" are not the same.

The above used only single value subtype notation in the constraint following FROM, but any
subtype notation that can be applied to the parent type can be used.  In particular, value range
subtyping is explicitly permitted for application to certain character string types when it is used in
the constraint following FROM, and is restricted to strings containing only a single character.

Some encoding rules (unaligned PER)Some encoding rules (unaligned PER)
will use the minimum number of bits perwill use the minimum number of bits per
character, depending on how manycharacter, depending on how many
different characters you allow in adifferent characters you allow in a
string, so imposing alphabet constraintsstring, so imposing alphabet constraints
can save bits on the line.can save bits on the line.
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Thus we can write:

Hex-digit-String ::= PrintableString (FROM ("0".."9" UNION "A".."Z"
                                                 UNION "a".."z" ))

which first forms the set of all single character strings using digits and letters (62 string values),
and then applies FROM to this set to generate the set of all PrintableString values containing only
these 62 characters.

The value range constraint can be used in this way for those character string types for which an
ordering of the characters is well-defined (BMPString, IA5String, NumericString, PrintableString,
VisibleString, UniversalString, UTF8String), but not for character string types based on the
International Register of Coded Character Sets (GeneralString, GraphicString, TeletexString, or
ViedotexString), where ordering is not easy to define.

6  Size constraints

A size constraint has a similar structure to a
permitted alphabet constraint.  It consists of the
word "SIZE" followed by any constraint
specification (in parentheses) that can be applied
to a non-negative integer.  It can (only) be
applied to a bit-string, an octet-string, a
character string (including the type "CHARACTER STRING" introduced in a later chapter) or to
a "SEQUENCE OF" or "SET OF" construction.  Its effect is to select those values of the parent
type that contain a number of characters or iterations equal to one of the integer values in the set
selected (from non-negative integers) by the constraint following the word "SIZE".

In the case of "SEQUENCE OF Xyz" and "SET OF Xyz", the constraint can appear after the type
definition, or immediately before the "OF".  This is necessary to allow constraints to be applied to
both the iteration counts and to the type being iterated, in cases such as

        SEQUENCE OF SEQUENCE OF PrintableString (SIZE (10))

This syntax would restrict the PrintableString to exactly ten characters, and cannot be used to
constrain the iteration counts.  To constrain these, you would use

        SEQUENCE (SIZE (10)) OF SEQUENCE OF PrintableString
or
        SEQUENCE OF SEQUENCE (SIZE (10)) OF PrintableString

Once again, ASN.1 is fully general in this area - the constraint notation appearing before the OF is
a general constraint that can contain unions and intersections etc, although the pre-1994
specifications were more restrictive.

In practice, the constraint following the word "SIZE" is almost always a single value constraint or
a value range constraint, such as:

        SEQUENCE ( SIZE (1..100) ) OF SEQUENCE ( SIZE (20) ) OF
                               PrintableString ( SIZE (0..15) )

Size constraints use value rangesSize constraints use value ranges
to specify the permitted lengths ofto specify the permitted lengths of
strings and iteration counts.  Theirstrings and iteration counts.  Their
use can again save bits on the line.use can again save bits on the line.
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which could represent a table of one to one-hundred rows with twenty columns, each cell
containing a PrintableString which is either empty or up to 15 characters long.

Going back to our Wineco-protocol, and referring to figure 22 in Section I Chapter 4, we
originally defined "sales-data" as an unlimited number of "Report-item".  It is generally quite hard
for an implementor to support unlimited numbers of things, although with increasing memory sizes
now easily available and large capacity disks, implementation of "effectively unlimited" (which is
what we mean here) is possible.  Both the BER and PER encodings will support the transfer of
effectively unlimited numbers (and sizes) of things, but with PER the encoding will be more
efficient if it is possible to limit counts and integer values, for example to values which can be held
in two or four octets.

It would be common practice to replace the "sales-data" line with:

        sales-data  SEQUENCE (SIZE (1..sales-ub)) OF Report-Item

The value reference "sales-ub" is required to be an integer value reference, and might be assigned
in a module which collects together all such bounds, using EXPORTS/IMPORTS to make it
available in the context of figure 22.  A typical assignment might be:

        sales-ub  INTEGER  ::=  10000

Consider a final example using both FROM and SIZE:

        PrintableString ( SIZE (1..10) INTERSECTION FROM ("A".."Z"))

Take a moment to work out what this means before reading on.

We first select the (finite) set of all strings with one to ten characters in them, and we intersect that
with the (infinite set) of all strings made up solely of the characters "A" to "Z".  The end result is
the set of strings of one to ten characters which contain only the letters "A" to "Z".  Note that
exactly the same result is obtained by any of:

        PrintableString (SIZE (1..10)) (FROM ("A".."Z"))
or
        PrintableString (FROM ("A".."Z")) (SIZE (1..10))
or
        First (FROM ("A".."Z"))
or
        Second (SIZE (1..10))
or
        PrintableString ( First INTERSECTION Second )
or
        PrintableString (First) (Second)

where

        First ::= PrintableString (SIZE (1..10))
and
        Second ::= PrintableString (FROM ("A".."Z"))
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7  Contained sub-type constraints

We have met this notation informally on a couple of occasions above.  This form of constraint is
where we provide a type reference name (for a subtype of the parent type) to identify the set of
values to be included.  This would not normally be useful unless it was within a more complex
constraint using intersections, or with repeated application of constraints, as in the cases

        PrintableString ( First INTERSECTION Second )
and
        PrintableString (First) (Second)

above.

Note that pre-1994, use of a type reference name in this way in a constraint required the name to
be preceded by the word "INCLUDES", and it is still permissible to write (for example):

        PrintableString (INCLUDES First INTERSECTION INCLUDES Second)
or
        PrintableString (INCLUDES First EXCEPT INCLUDES Second)

but these do not read very well, and it is best to omit the word "INCLUDES".

8  Inner Subtyping

8.1  Introduction

Inner subtyping is an important and under-used
tool.  It is often the case that application designers
have invented a new meta-notation of their own
(not supported by ASN.1 tools) to produce
specifications which could more sensibly have
been written using inner subtyping (which is
supported by the OSS tool).  Not only does this
require the reader to get used to the ad hoc notation, but it can also make the implementor's work
unnecessarily hard, with some sort of ad hoc pre-processing of the specification needed before use
of ASN.1 tools.

It is likely, perhaps probable, that this occurs through ignorance.  Inner subtyping has an overall
importance which is not brought out by its positioning as "just another subtyping notation" in the
ASN.1 specification.

The subtype notations described so far provide a very powerful tool for application designers to
clearly specify the range of permitted values in their protocols for the basic types, but there is
another requirement:  some designers have a requirement to define a number of different subsets of
a protocol to suit different purposes, different so-called "conformance classes".

In the simplest case, we have a "Full Class" protocol in which each message is some defined
ASN.1 type such as the "Wineco-Protocol" in figure 21 of Section 1 Chapter 3, but we also wish
to define a "Basic Class" protocol in which some of the optional elements of sequences are

Inner subtyping is an importantInner subtyping is an important
mechanism that can help to givemechanism that can help to give
precision to the specification ofprecision to the specification of
subsets or conformance classes of asubsets or conformance classes of a
protocol.protocol.
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required to be omitted, others are required to be always included, some of the choices are
restricted, and some of the iterations and/or integer values have restricted values.

If you consider the set of abstract values of the "Wineco-Protocol" type, you will recognise that all
the restrictions described above (including requiring some optional elements to be present and
others to be absent) are simply the selection of a particular subset of the "Wineco-Protocol" values
- in other words, subtyping!

There are, however, two additional requirements:

• First, it needs to be possible to define both of the conformance classes without duplication
of text (and hence scope for error).

• Secondly (for some but not all applications) the encoding of those values that are present
in both the "Basic Class" protocol and the "Full Class" protocol should be the same in both
protocols.

The latter requirement is so as to enable easy interworking between "Full class" and "Basic Class"
implementations.

There is a relationship between this area and the "extensibility" issues described later, but there are
differences.  "Extensibility" refers to differences in specifications over time (different versions)
where the maximal functionality is not known when the first systems are deployed, whereas here
we are concerned with differences in implementations where maximal functionality is known from
the start, permitting a somewhat simpler approach.

In order to define all conformance classes without duplication of text, it is necessary to:

• (first) define the "Wineco-Protocol" type with maximal functionality, providing it with a
type reference name; then

• to use this type reference name and apply to it the constraints which generate the "Basic-
Ordering-Class" and "Basic-Sales-Data-Class" (or other conformance classes). The latter
is achieved by placing subtype constraint notation, in parentheses, following the type
reference name.   So we have:

                Basic-Ordering-Class ::= Wineco-Protocol (.......)

The (.......) is the inner subtyping constraint, where we constrain the inner components of "Wineco-
Protocol".

It is important to note that in both BER and PER, the application of these constraints does not
affect the encoding of the values that are in the selected subset - they are encoded exactly as in the
"Full-Class" protocol.  By contrast, if constraints (such as removal of some choices, or making
optional fields mandatorily present or absent) were specified by an ad hoc meta-language that
modified the ASN.1 text (or by explicitly writing out the Basic Class protocols), the encoding of
values in the Basic Class would be different from that of the corresponding values in the Full
Class, and care would also need to be taken that rules on unambiguous tags (see below) were not
violated with any of the variants that were produced.

This is another reason why use of inner subtyping should be preferred to an ad hoc "pre-processor"
notation - it ensures that encodings and taggings are the same in all classes.
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8.2  Subsetting Wineco-Protocol

Once again, let us proceed with an illustration first.  Consider figure II-3.  This repeats the top-
level definition of figure 21, but now we have moved to version 2 (produced in AD 2002), and
have an additional top-level choice available to enable us to up-load the contents of the electronic
cash in our till. (The fact that this follows an extension marker makes no difference to the inner
subtyping notation, and for the moment the presence of the extension marker line should be
completely ignored.) Refer also to Appendix 2 that contains the full definition of Wineco-Protocol.

Here we have restricted the outer-level choice by making precisely one of the version 1 alternatives
always present and the other always absent.  We are further applying included subtype constraints
(see above) "Basic-Order" and "Basic-Return" to the alternative that is present, restricting it
further.  We will shortly define the types "Basic-Order" and "Basic-Return".

Notice that here we have listed every alternative present in version 1, giving PRESENT or
ABSENT.  This is called a "full specification".  Despite being called a "full specification", it is not
actually necessary to list every alternative.  ABSENT is implied for any not listed, so the definition
of "Basic-Sales-Class" is equivalent to:

                Basic-Sales-Class ::= Wineco-Protocol
                (WITH COMPONENTS
                 {ordering               ABSENT ,
                  sales (Basic-Return)   PRESENT,
                  e-cash-return          ABSENT } )

and to

                Basic-Sales-Class ::= Wineco-Protocol
                (WITH COMPONENTS
                 {sales (Basic-Return)   PRESENT} )

(Note that there must be at least one alternative listed, and that there must be exactly one listed as
PRESENT in the "full specification".)

There is also a "partial specification" notation in which the constraint starts with "... ,".  This is
shown in figure II-4, where we wish the Basic-Sales-Class2 protocol to include both "sales" and

Wineco-Protocol  ::=  CHOICE
                {ordering [APPLICATION 1] Order-for-Stock,
                 sales    [APPLICATION 2] Return-of-sales-data,
                 ... ! PrintableString : "See clause 45.7",
                 e-cash-return -- Added in version 2 --
                          [APPLICATION 3] Cash-upload}

                Basic-Ordering-Class ::= Wineco-Protocol
                (WITH COMPONENTS
                  {ordering (Basic-Order) PRESENT,
                   sales                  ABSENT } )

                Basic-Sales-Class ::= Wineco-Protocol
                (WITH COMPONENTS
                  {ordering                ABSENT ,
                   sales  (Basic-Return)  PRESENT } )

               Figure II-3:  Constraining in version 2



© OS, 31 May 1999 169

"e-cash-return" messages.  "Partial specification" differs from the "full specification" only in that
any alternatives not listed remain as possible unconstrained choices, and any listed are neither
required to be ABSENT nor PRESENT if neither of these words are present (but may be
constrained in other ways).  Thus in figure II-4, either the "sales" (constrained by "Basic-Return")
or the "e-cash-return" messages (unconstrained) are available and have to be implemented, but the
"ordering" messages should never be sent or received and need not be implemented.

Let us go on to specify what is a "Basic-Return". This is shown in figure II-5 as a constrained
"Return-of-sales".  Note that as usual in ASN.1, we could have put the constraint "in-line" in
figure II-5 and made no use of the type reference name "Basic-Report-Item".  This is just a matter
of style.  Figure II-6 shows the same definition but with the constraint "in-line" (we have not
repeated the comments in figure II-6).  Whilst more compact, it is arguable that the lack of a name
to associate with the inner constraint on "Report-item" in figure II-6 makes that style less readable
than the slightly more verbose style of figure II-5.  Both notations do, however, express exactly the
same semantics.

Basic-Sales-Class2 ::= Wineco-Protocol
                ( WITH COMPONENTS
                  {... ,
                   ordering ABSENT,
                   sales (Basic-Return) } )

        Figure II-4:  Constraining only the sales alternative

              Basic-Return ::= Return-of-sales
                ( WITH COMPONENTS
                  {... ,
                   no-of-days-reported-on (7)
                   -- reports must be weekly --,
                   reason-for-delay  ABSENT,
                   additional-information  ABSENT,
                   sales-data (SIZE (1..basic-sales-ub)
                               INTERSECTION
                              (WITH COMPONENT
                                (Basic-report-item) } )

                Basic-report-item ::= Report-item
                   ( WITH COMPONENTS
                     {...,
                      item-description ABSENT
                        -- Version 2 of Report-item allows omission
                        -- of item-description even for newly-stocked
                        -- items --} )

                Figure II-5:  Constraining "Return-of-Sales"



170                                                                                                                           © OSS,31 May 1999

Figures II-5 needs a little explanation of "sales-data".  Here we are further constraining the number
of "Report-item"s, and also restricting each "Report-item" to the subset "Basic-report-item".
Notice that when we apply inner subtyping to a SEQUENCE or SET, we start the constraint with
"WITH COMPONENTS", and then have paired curly brackets with the constraints (if any) on
each component listed within the brackets following the name of the component.  (You can see this
with the constraint on "Report-item" (which is a SEQUENCE) in Figure II-5).  Now suppose that
one of the components of the outer SEQUENCE is a SEQUENCE

OF or SET OF, then we can apply a constraint to the number of iterations of the SEQUENCE OF
or SET OF by directly listing it following the component name, but if we wish to constrain the
type being iterated, we have to apply a further inner subtyping constraint, but this time beginning
with the words "WITH COMPONENT" (instead of "WITH COMPONENTS"), followed directly
by the constraint to be applied to the type being iterated.

8.3  Inner subtyping of an array

As a final example, let us return to our two-dimensional array of PrintableString introduced
earlier.  We will first define:

        Generic-array ::= SEQUENCE OF SEQUENCE OF PrintableString

and we will then produce a "Special-array" by inner subtyping that will be (almost - see below)
equivalent to our original definition of

        SEQUENCE ( SIZE (1..100) ) OF SEQUENCE ( SIZE (20) ) OF
                               PrintableString ( SIZE (0..15) )

This is what we need:

        Special-array ::= Generic-array
                ( SIZE (1..100) INTERSECTION
                    WITH COMPONENT
                      (SIZE (20) INTERSECTION
                          WITH COMPONENT (SIZE (0..15) )
                      )
                 )

              Basic-Return ::= Return-of-sales
                ( WITH COMPONENTS
                  {... ,
                   no-of-days-reported-on (7),
                   reason-for-delay  ABSENT,
                   additional-information  ABSENT,
                   sales-data (SIZE (1..basic-sales-ub)
                               INTERSECTION
                              (WITH COMPONENT
                                ( WITH COMPONENTS
                                   {...,
                                    item-description ABSENT } )
                                                            } )

                Figure II-6:  Applying the constraint "in-line"
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Why only almost equivalent?  It is important to remember that a PER encoding of a Generic-array
with inner subtyping is always the general encoding (inner subtype constraints are not PER
visible), so an implementation of Special-array with the above constraints will produce bits on the
line identical with the corresponding values of "Generic-array", whilst putting in the constraints
explicitly will produce a different (more compact) encoding.  Where the constraints apply to all
classes of implementation, or where interworking between different classes is not required, it is
clearly better to embed the constraints explicitly.  Where, however, interworking is required
between a full implementation and a constrained implementation, it is generally better to use inner
subtyping to express the constraint.

9  Conclusion

"Simple subtyping" can indeed be simple - as
when a range is specified for an INTEGER
type, but requires care in writing (and a good
understanding of the syntax when reading) if
the very powerful set arithmetic and inner
subtyping features are used.

Because in the old Basic Encoding Rules
(BER), subtyping never affected the bits on
the line, there was a tendency for writers of ASN.1 protocols not to bother to think about
subtyping, and there are many specifications which, if taken at face value, would require
implementations to support indefinite length integers, even 'tho' everybody knows that was never
the intention.

Both to give precision to the requirements on implementation, and also because the more recent
Packed Encoding Rules will reduce the bits on the line if subtyping is applied, it is now strongly
recommended that in producing new or revised protocols, subtyping is applied wherever possible
and sensible.   This is particularly important for ranges of integers and iterations of SEQUENCE
OFs or SET OFs.

The simplest forms of range and sizeThe simplest forms of range and size
constraint are very simple to apply,constraint are very simple to apply,
and should be used whenever possible.and should be used whenever possible.
The more complex forms using setThe more complex forms using set
arithmetic or inner subtyping are veryarithmetic or inner subtyping are very
powerful, but are for more specialisedpowerful, but are for more specialised
use.use.



172                                                                                                                           © OSS,31 May 1999

Chapter 4
Tagging

(Or: Control it or forget it!)

Summary:  Tagging was an important (and difficult!) part of the ASN.1 notation pre-1994.  Its
importance (and the need to understand it) is much less now, due to three factors:

• the ability to set an AUTOMATIC TAGS environment in the module header as described in
Section I Chapter 3;

• the provision for extensibility without relying on tags to achieve this;

• the introduction of PER which does not encode tags.

There are four tag classes:

• UNIVERSAL

• APPLICATION

• PRIVATE

• context-specific

and a tag value is a class  and a number (zero upwards, unbounded).

This chapter describes the requirements on use of tags in a legal piece of ASN.1, and gives
stylistic advice on the choice of tag class.

1  Review of earlier discussions

We have already discussed the idea of
including tags, and have introduced
the concepts of implicit tagging and
explicit tagging, describing these in
terms of their effect on a BER
encoding:  changing the "T" in the
TLV for the type (implicit tagging), or
adding a new TLV wrapper (explicit
tagging).

This is clearly not an academically

Tags were originally closely related to theTags were originally closely related to the
"T" in the "TLV" of the Basic Encoding"T" in the "TLV" of the Basic Encoding
Rules (BER), and gave users control overRules (BER), and gave users control over
the "T" values used for different elementsthe "T" values used for different elements
and choices.  This was important ifand choices.  This was important if
interworking between version 1 and version 2interworking between version 1 and version 2
was to be easy in a BER environment withwas to be easy in a BER environment with
no explicit extensibility marker.no explicit extensibility marker.
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satisfactory way of discussing tagging (but might satisfy many readers!), given that the notation is
supposed to be independent of the encoding rules, and that there are now other ASN.1 encoding
rules that do not use the "TLV" concept.  We will therefore introduce below an encoding-rule-
independent, and slightly more abstract (sorry!), description of tags.

In earlier text we have implied (wrongly!) - but never stated! - that the name-space for tag values
is a simple integer.  Indeed, we did use a tag "[APPLICATION 1]" in figure 21, which might imply
a more complex name-space.  We describe below the complete set of available values for tags, and
the way these are normally used.

Finally, we have already briefly mentioned that there are rules about when tags are required to be
distinct (broadly, wherever the "T" of a TLV needs to be distinct from that of some other TLV to
ensure unambiguity in BER encodings).   We give below the actual rules.

But as a last important reminder:  post-1994 you can establish an automatic tagging
environment in which you need know nothing about tags, and need never include them in your type
definitions.  This is the recommended style to adopt for new specifications, and is absolutely the
right approach for anybody who gets confused with the text below!

Let us look at the global level for a moment.  Wherever ASN.1 requires or allows type-notation, it
is permissible to write:

        tag-notation  type-notation

In other words, tagging is formally defining a new type from an old type, and tag notation can be
repeatedly applied to the same type notation.  So the following is legal:

        My-type ::= [APPLICATION 1] [3] INTEGER

but would be rather pointless in an environment of implicit tagging, as the "[3]" is immediately
over-ridden!  You will rarely see this sort of construction - tag-notation is normally applied to a
type-reference or to untagged type-notation.

Finally, if a type is defined using tag-notation, the tag-notation is ignored for the purposes of
value-notation.  Value notation for My-type above is still simply "6" (for example).

2  The tag name-
space

Staying with BER encodings
for the moment:  a tag encodes
in 7 bits of the "T" part of a
BER TLV.

The remaining bit is nothing to
do with tagging, and is set to
one if the "V" part is itself a
series of TLVs (a constructed
encoding such as that used for
"SEQUENCE" or "SET"), and

TagsTags

• [UNIVERSAL 29]:  do not use UNIVERSAL  do not use UNIVERSAL
class tags.class tags.

• [APPLICATION 10]:  use for commonly used types  use for commonly used types
or top-level messages.  Do not re-use.or top-level messages.  Do not re-use.

• [PRIVATE 0]:  Rarely seen.  Use to extend a  Rarely seen.  Use to extend a
standard with private additions (if you reallystandard with private additions (if you really
must!).must!).

• [3]:  Use and re-use in a different context.  TheUse and re-use in a different context.  The
most common form of tagging.most common form of tagging.
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to zero if the "V" part is not composed of further TLVs (a primitive encoding such as that used for
"INTEGER" or "BOOLEAN" or "NULL").

A tag is specified by giving a class and a tag-value (the latter is indeed a simple positive integer -
zero upwards, unbounded).  But the class is one of four possibilities:

        UNIVERSAL class
        APPLICATION class
        PRIVATE class
        context-specific class

UNIVERSAL 0 Reserved for use by the encoding rules

UNIVERSAL 1 Boolean type

UNIVERSAL 2 Integer type

UNIVERSAL 3 Bitstring type

UNIVERSAL 4 Octetstring type

UNIVERSAL 5 Null type

UNIVERSAL 6 Object identifier type

UNIVERSAL 7 Object descriptor type

UNIVERSAL 8 External type and Instance-of type

UNIVERSAL 9 Real type

UNIVERSAL 10 Enumerated type

UNIVERSAL 11 Embedded-pdv type

UNIVERSAL 12 UTF8String type

UNIVERSAL 13 - 15 Reserved for future editions of this Recommendation | International
Standard

UNIVERSAL 16 Sequence and Sequence-of types

UNIVERSAL 17 Set and Set-of types

UNIVERSAL 18-22 Character string types

UNIVERSAL 23-24

UNIVERSAL 35-30

Time types

More character string types

UNIVERSAL 31-... Reserved for addenda to this Recommendation | International
Standard

Figure II-7:  Assignment of UNIVERSAL class tags
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In the tag notation, a number alone in square brackets denotes the tag-value of a context-specific
class tag.  For the other classes, the name (all upper-case) of the class appears after the opening
square bracket.

For example:

        [UNIVERSAL 29]         tag-value 29, "universal" class
        [APPLICATION 10]       tag-value 10, "application" class
        [PRIVATE 0]            tag-value 0,  "private" class
        [3]                    tag-value 3,  "context-specific" class

I like to think of the four classes of tag as just different "colours" of tag (red, green, blue, yellow).
The actual names do not matter.  For most purposes, the "colour" of the tag does not matter either!
All that matters is that tags be distinct where so required, and they can differ either in their
"colour" (class) or in their tag-value.  The colour you choose to use is mainly a matter of style.

There is only one hard prohibition:  users are not allowed to tag types with a UNIVERSAL class
tag.  This class is (always) used for the "default tag" on a type, and values of such tags can only
be assigned within the ASN.1 specification itself.

Figure II-7 is a copy of a table from X.680/ISO 8824-1 (including all amendments up to
September 1998), and gives the UNIVERSAL class tag assigned as the default tag (used unless
overridden by implicit tagging) for each of the type notations and constructor mechanisms defined
in ASN.1.

The main reason for forbidding use of UNIVERSAL class tags by users is to avoid problems when
future extensions to ASN.1 occur.  It is, however, important to note that this is no real hardship, as
every tag has equal status with every other tag, no matter what its "colour" (class).

There have been specifications that conformed to pre-1994 ASN.1, but wanted to use UTF8String
(added 1998), and decided to copy the text of the post-1994 definition into their own application
specification.  This is probably harmless, but is strictly in violation of the specification.  As well
as being illegal, it is also unnecessary to copy the text and to assign a UNIVERSAL class tag in
the copied text - an APPLICATION class tag can be used in the definition of the type, and
provided the type is implicitly tagged wherever it is used, the end-result is indistinguishable from
an initial assignment with a UNIVERSAL class tag, as later implicit tagging will override either.

So what about the other three classes of tag?  Which one should be used when?  To repeat:  they
are all equivalent.  Use PRIVATE class tags absolutely everywhere if you wish!  But as a matter of
style, most people use context-specific class tags most of the time (they are the easiest to write -
just a number in square brackets!).  The name "context-specific" implies that they are only
unambiguous within some specific context (typically within a single SEQUENCE, SET, or
CHOICE), and it is normal to use (and to re-use) these tags (from zero upwards) whenever you
need to tag the alternatives of a CHOICE or the elements of a SEQUENCE or SET to conform to
the rules requiring distinct tags in particular places (see below).

It is also common practice (but by no means universal nor required) to use APPLICATION class
tags in the following way:

• An application class tag is only used once in the entire application specification, it is never
applied twice.
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• If the outer-most type for the application is a CHOICE (it usually is), then each of the
alternatives of that choice are tagged (implicitly if possible) with APPLICATION class
tags (usually [APPLICATION 0], [APPLICATION 1], [APPLICATION 2], etc).  We saw
this approach in Figure 21 of Section I Chapter 3.

• If there are some complex types that are defined once and then used in many parts of the
application specification, then when they are defined they are given an application class tag
(and this tag is never given to anything else), so they can be safely used in a choice (for
example) with no danger of a violation of any rules requiring distinct tags (unless the
identical type appears again in the CHOICE - presumably with different semantic).

An example of this might be the types "OutletType" and "Address" in Figures 13 and 14 of Section
I Chapters 3 and 4.  So in Figure 14 we might write instead:

                OutletType ::= [APPLICATION 10] SEQUENCE
                      { ....
                        ....
                        ....}

                Address ::= [APPLICATION 11] SEQUENCE
                      { ....
                        ....
                        ....}

taking the decision to use application class tags 0 to 9 for top-level messages, and 10 onwards for
commonly-used types.

There is no limit to the magnitude of a tag-value, but when we examine BER in Section III, we will
see that a "T" will encode in a single octet provided the tag-value to be encoded is less than or
equal to 30, so most application designers usually try to use tag-values below 31 for all their tags.
(But there are specifications with tag values in the low hundreds)

PRIVATE class tags are never used in standardised specifications.  They have been used by some
multi-nationals that have extended an international standard by adding extra elements at the end of
some sequences or sets.  The assumption here (as with most jiggery-pokery with tags) is that BER
is being used, and the (reasonable) hope is that by adding new elements with PRIVATE class tags,
these will not clash with any extension of the base standard in the future.

3  An abstract model of tagging

Note:  This material is not present in the ASN.1
specification.  It is considered by this author to be
a useful model to provide an encoding-rule-
independent description of the meaning of tagging
at the notational level, and a means of specifying
the behaviour of encoding rules.  Most ASN.1
"experts" would probably accept the model, but
might argue that it is not needed, and is only one
of several possible ways of modelling what the ASN.1 notation is specifying, in order to link it
cleanly to encoding rules.  (See Figure 999 again!).

We can model tagging as affectingWe can model tagging as affecting
a tag-list associated with everya tag-list associated with every
ASN.1 abstract value.  SomeASN.1 abstract value.  Some
encoding rules use some or all ofencoding rules use some or all of
the tags in the tag-list as part ofthe tags in the tag-list as part of
the encoding.the encoding.
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                                             (one or more)

Figure II-8:  Model of ASN.1 abstract values

In order to provide a means of describing the effects of tagging we introduce a model of ASN.1
abstract values (the "things" that are in ASN.1 types) which involves some structure to these
values.  This is shown in figure II-8.

In figure II-8 we see that each ASN.1 abstract value is made up of a basic-value (like "integer 1",
"boolean true", etc), together with an ordered tag-list consisting of one or more tags (an innermost,
closest to the basic-value, and an outermost, furthest away).  Each tag consists of, as described
earlier, a class and a tag-value.

When a type is defined using ASN.1 type-notation such as "BOOLEAN" or "INTEGER", or as the
result of using notation such as SEQUENCE or SET, all its values are given the same tag-list - a
single tag (which is both innermost and outermost) of the UNIVERSAL class.  The tag-value for
each type notation is specified in the ASN.1 specification, and repeated in figure II-7 above.  (We
have referred to this as the "default tag" for the type in earlier text).

There are only two operations that are possible on a tag-list.  If a type is implicitly tagged, then
the outer-most tag is replaced by the new tag specified in the tagging construction.  If a type is
explicitly tagged, then a new outer-most tag is added to the tag list.  Note that all ASN.1 abstract
values always have at least one tag.  They acquire additional tags by explicit tagging, and can
never have the number of tags reduced.

With this model of tagging, we can now define our Basic Encoding Rules as encoding a "TLV" for
each tag in the tag-list, from the outermost to the innermost tag, where the tag forms the "T", the
"L" identifies the length of the remainder of the encoding of the ASN.1 abstract value, and each
"V" apart from the last contains (only) the next TLV.   The last "V" contains an encoding
identifying the basic value.

Basic valueTag-list

Class
and

Tag-value

Class
and

Tag-value

Class
and

Tag-value
............

Innermost tagOutermost tag
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The reader will recognise that this gives exactly the same encoding as was obtained when we
described explicit tagging as "adding an extra layer of TLV", but the use of the abstract model
makes it unnecessary to describe the meaning of the notation in encoding rule terms.  We use the
concept of a tag-list as a sort of indirection between the notation and the encoding rules.  It
represents information which an ASN.1 tool will normally need to retain between syntax analysis
and other functions.

Finally, but very importantly, note that for most types, all the values in the type have exactly the
same tag-list.  If we apply further tagging to the type, we will change the tag-list (add a new tag or
replace the outer-level tag) for each and every value in that type.

Moreover, for many purposes (in particular what tag values are permitted) all that matters is the
outer-most tag.  It is thus meaningful to talk about "the tag of the type", because every abstract
value of that type has the same tag-list (and hence the same outer-level tag).  There is, however,
one exception to this simple situation.

The CHOICE constructor is modelled as forming a new type whose values are the union of the set
of values in each of the alternatives, with each value retaining its original tag-list.  Thus for the
choice types, it is not meaningful to talk about "the tag of the type", as different abstract values in
the type have different tag-lists.  (It is important to remember this if you see text in canonical
encoding rules saying "the elements are sorted into tag-order" - look for some qualifying text to
cover the case of a choice type!)

Suppose, however, that a choice type is explicitly tagged (the only form of tagging allowed for
choice types).  Then whilst the tag-list on different abstract values may (will) still differ, the outer-
most tag is the same for all abstract values in the type, and the explicitly tagged choice is just like
any ordinary type - every abstract value has the same outer-level tag and we can talk about this as
"the tag of the type".

So we can now recognise that most types have a single associated tag (the common outer-level tag
for all abstract values of that type), that we can call "the tag of the type", but that an untagged
choice type has many tags associated with it (all the outer-level tags of any of its values).  If none
of the alternatives of this choice are themselves choices, then the number of outer-level tags (all
distinct) associated with this choice type will be equal to the number of its alternatives.  If,
however, some alternatives are themselves choice types, they will each bring to the table multiple
(distinct) outer-level tags, and the outer-level choice type will have more (distinct) tags associated
with it than it has alternatives.

For example, if:

                My-choice ::= CHOICE
                  {alt1    CHOICE
                            {alt1-1  [0] INTEGER,
                             alt1-2  [1] INTEGER},
                   alt2    [2] EXPLICIT My-choice2}

then the tags associated with "My-choice" are context-specific zero, one, and two.  Any tags in
"My-choice2" are hidden by the explicit tagging.

With this concept of "the tag of the type", or rather "the tags associated with the type" (which are
always distinct), we can go on to discuss the rules for when distinct tags are required.
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4  The rules for when tags are required to be distinct

The rule is that distinct tags are required:

• for the alternatives of a CHOICE;

• for the elements of a SET;  and

• for consecutive DEFAULT or OPTIONAL elements and any following mandatory element
in a SEQUENCE.

There - its simple really, isn't it? (Skip the rest!)

The rules given below (and in the ASN.1 specification) are expressed in terms of tag uniqueness,
but are most easily remembered if you know that they are the minimum necessary rules to enable
a TLV-style of encoding to be unambiguous!  Alternatively, just remember the rules and forget the
rationale!

Within a CHOICE constructor, the collection of tags brought to the table by each alternative have
all to be distinct.  (Remember, each alternative brings just one tag to the table - the common outer-
level tag of the tag-list of its abstract values, unless it is an untagged choice type, when it brings to
the table at least one tag for each alternative of the choice type, but these are all distinct.)

Similarly, within a SET constructor, the tags of all the elements have to be distinct, with any
elements that are choice types again potentially contributing several distinct tags to the matching
process.

Within a SEQUENCE constructor, the rules are a little more complicated.  In the absence of
DEFAULT or OPTIONAL, there are no requirements for distinct tags on the elements of a
sequence type.  However, in the presence of DEFAULT or OPTIONAL, the situation changes
slightly:  for any block of successive elements marked DEFAULT or OPTIONAL, together with
the next mandatory element, if any, the tags of all elements in that block are required to be
distinct.

You will want to think about that for a moment.  Clearly the block of DEFAULT or OPTIONAL
elements must all have distinct tags, or (in BER) the receiver won't know which are present and
which missing, but equally, if one of those tags matched the next mandatory element there could
again be confusion.  By requiring that the following mandatory element has a tag distinct from any
element of the preceding block, then the appearance of that tag in an encoding gives complete
knowledge that the block of OPTIONAL or DEFAULT elements is complete, and processing of the
remainder of the sequence elements can proceed in a normal manner.

There is only one small additional complication if you are trying to control your tags without using
automatic tagging.  That is an interaction between the extensibility marker and the rules for
distinct tags, in circumstances where there are multiple extension markers within a sequence (for
example, one on a choice element in the sequence and one at the end of the sequence).   The
purpose of the rules here is to ensure that if a version 2 specification adds elements, a version 1
system receiving those elements will be in no doubt (with BER – there is never a problem with
PER!) about whether the version 2 specification (of which, of course, it has no knowledge!) had
extended the choice element or added further elements to the sequence.  (This can matter if
different exception handling had been specified in version 1 in the two cases.)  For details of these
additional requirements see the discussion in the next chapter on Extensibility.

When do we need distinct tags?When do we need distinct tags?
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For those of a philosophical bent, you may wish to ponder how much simpler these rules could
have been if (in BER, which really dictated the rules) all CHOICE constructions had automatically
produced a TLV wrapper with a default tag (say UNIVERSAL 15), in the same way as
SEQUENCE!   Anybody using this book as an academic text might want to set that question as an
exercise for the better students!  Please note that whilst PER does not have a TLV philosophy, it
does none-the-less have explicit encoding associated with CHOICE, which BER does not.  One day
some-one will invent the perfect encoding rule philosophy!

5  Automatic tagging

This clause is solely for implementors!

What tags are applied in an "automatic tagging" environment?  First, if anyh piece of SET,
SEQUENCE or CHOICE notation contains a textually present tag on any of its outer-level
elements or alternatives, automatic tagging is disabled for the outer-level of that notation.
Otherwise, tags [0], [1], [2], etc. are successively applied to each element or alternative in an
environment of implicit tagging.  (So elements/alternatives that are CHOICE types get explicitly
tagged and all other elements get implicitly tagged.)

6  Conclusion

Tagging appears complex, but once understood is a relatively simple matter.  In early
specifications it became common, as a matter of style, to simply tag all elements of SEQUENCEs
and SETs and alternatives of CHOICEs with context-specific (implicit) tags from zero upwards
(avoiding the word "IMPLICIT" if the type being tagged was itself a CHOICE).

With the introduction of an "implicit tagging" environment, this became somewhat easier, but if
this is desired, it is essentially what automatic tagging provides.

There are few specifications where the minimum necessary tagging is used.  Writers of ASN.1
protocols tend to be more "symmetric" (or lazy?) than a minimalist approach would require.

It is the firm recommendation of this author that all new modules be produced with automatic
tagging, and for tags to be forgotten about!
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Chapter 5
Extensibility, Exceptions, and Version

Brackets

(Or: There is always more to learn!)

Summary:  This chapter:

• describes the "extensibility" concept of interworking between version 1 systems and later
version 2 systems;

• explains the need for an "extension marker" to indicate where version 2 additions might
occur;

• describes all the places where an extension marker is permitted;

• explains the need for defined exception handling when an extension marker is used;

• describes the notation for "version brackets" to group together elements added in later
versions; and

• describes the interaction between extensibility and the requirements for distinct tags.

Presence in appropriate places of the extension marker is key to use of the Packed Encoding Rules
(PER) which generate encodings approximately 50% the size of those produced by the Basic
Encoding Rules (BER).

Writers of ASN.1-based protocols are very strongly encouraged to include extension markers
(with defined exception handling) in their version 1 specifications in order to minimise
problems in the future.

1  The extensibility concept

NOTE — In this chapter, the acronyms BER (Basic Encoding Rules) and PER (Packed Encoding Rules)
are used without further explanation.

What is "extensibility"?
"Extensibility" refers to a
combination of notational
support, constraints on
encoding rules, and

You wrote your specification three years ago,  thereYou wrote your specification three years ago,  there
are many fielded implementations - success!  Butare many fielded implementations - success!  But
you want to make additions.  How do you migrate?you want to make additions.  How do you migrate?
What will version 1 systems do with your additions?What will version 1 systems do with your additions?
ASN.1 extensibility gives you control.ASN.1 extensibility gives you control.
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implementation rules.  This support enables a protocol specified (and implemented) as version 1 to
be upgraded some years later to version 2 in specifically permitted ways.  Provided the version 2
extensions are within the permitted set of extensions (and provided the version 1 protocol was
marked as "extensible"), then there will be a good interworking capability between the new version
2 systems and the already-deployed and unmodified version 1 systems.

The keys to extensibility are:

• To ensure that version 2 additions or extensions are "wrapped up" with length counts in
encodings, and can be clearly identified by version 1 systems as "foreign material".

• To provide a clear specification that version 1 systems should process the parts of the
encoding that are not "foreign material" in the normal version 1 way, and should take
defined and predictable actions with the "foreign material".

• To avoid unnecessary (and verbose) wrappers and identifications in encodings by using
notational "flags" on where version 2 additions or extensions may need to be made.

For the extensibility concept to be successful, all three of these components must be present.

A detailed discussion of possible exception handling actions is given in Section I Chapter 7.

With the BER encoding rules, all fields have a tag and a length associated with them, covering the
first point above, but producing the verbosity we want to avoid in the third point.  BER itself says
nothing about point 2.  Some forward-thinking application designers did include text such as:
"Within a SEQUENCE or SET, implementations should ignore any TLV which has a tag that is
not what is expected in their version", but this was by no means universal, and it was in general
not possible to specify different action on "foreign material" in different parts of the protocol.
With the PER encoding rules, length wrappers are often missing, and tags are always missing.
PER has to be told where to insert length wrappers and to encode presence or absence of version 2
material if extensibility is to be achieved without undue cost.  This is the primary purpose of the
"extension marker".

2  The extension marker

What does the extension marker look like?  We have
already encountered it in Figure 21 and Figure 22 of
Section I Chapters 3 and 4.  It is the ellipsis (three
dots) following the "sales" alternative in line 26 of
Figure 21, and following the "sales-data" element in
Figure 22.

If the reader now refers to Figure II-3 in Chapter 3, we see another element being added after the
extension marker in the "Wineco-protocol" CHOICE of Figure 21.  This is our version 2 addition.

(Note that an ellipsis is also used following "WITH COMPONENTS {".  This is a separate use of
three dots, pre-dating the extensibility work, and should not be confused with extensibility.)

Look out for the three little dots.Look out for the three little dots.
Put them in as often as you like,Put them in as often as you like,
they cost you little on the line.they cost you little on the line.
(Zero in BER, one bit in(Zero in BER, one bit in
PER).PER).
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3  The exception specification

It is strongly recommended that all uses of
extensibility be accompanied by an exception
specification, unless the same exception handling is
specified for the entire application.

The exception specification makes clear what
implementors of version 1 systems are supposed to
do with "foreign material" in this position in the message (as in Figures 21 and 22), but this
recommendation is not universally followed at this time.

The syntax of the exception specification (which can appear immediately after any ellipsis which
indicates extensibility) is either an integer value, or the name of any ASN.1 type followed by a
colon followed by a value of that type.  Typical examples would be:

                !3
                !10
                !PrintableString:"Incorrect error code for operation"
                !My-Type:{field1 returnError, field2 "Code26"}

The first two might be used where there are a list of numbered exception handling procedures, and
would identify which to apply in each position of added material.  The third might be used where
exceptions always give error reports, and the value is just the text for the error report.  The final
example might be used where "My-Type" has been defined as a SEQUENCE with the first element
an enumeration of possible actions (for example, "abort", "returnError", "ignore",
"treatAsMaximum" and the second (optional) element as a character string qualifying those
actions.  Note that "treatAsMaximum" might be an appropriate exception handling procedure for
an ellipsis that was within a constraint, whilst "Ignore" is clearly only applicable to added material
in a SEQUENCE or SET.  For an unexpected CHOICE alternative, "returnError" might be
desired.  ASN.1 provides the notational tools, but only the application designer can decide how to
use them appropriately.  (For more discussion, see Section I Chapter 7.)

4  Where can the ellipsis be placed?

In the first ASN.1 extensibility specification, ellipses could be placed (and extensions added
serially after them) as follows (illustrations in Figure II-9 give the version 1 text followed by the
version 2 text):

• At the end of any SEQUENCE or SET or CHOICE (see figures 21 and II-3).

• Wherever there is a constraint (see figure II-9).

• At the end of the list of enumerations in an ENUMERATED type (see figure II-9).

Unless you intend uniformUnless you intend uniform
exception handling throughoutexception handling throughout
your application, add anyour application, add an
exception specification to yourexception specification to your
extension marker.extension marker.
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An early addendum to the ASN.1 extensibility specification allowed the insertion point for new
material in a SEQUENCE, SET or CHOICE (but nowhere else) to be not just at the end, but in the
middle.  This was flagged by the use of two ellipsis elements as shown in Figure II-10.  Again we
have included the exception specification to remind implementors that the handling of foreign
material at this position is specified in clause 50 of the application specification.

5  Version brackets

The same addendum introduced version brackets,
with an opening bracket of a pair of "[[" and a
closing bracket of "]]".  These were introduced to
reduce the number of length wrappers needed at
any given insertion point to the minimum
necessary - one wrapper for each new version,
and also because application designers felt they would like to be able to identify for historical
purposes what was in version 1, version 2, version 3, etc.  With extensions for versions 2 and 3,
the above sequence could look like figure II-11.

INTEGER (0..255, ... )            or  INTEGER (0..255, ... !1)
INTEGER (0..255, ..., 0..65535)       INTEGER (0..255, ... !1, 0..65535)

ENUMERATED {red, blue, green, ... }
ENUMERATED {red, blue, green, ..., purple }

        Figure II-9:  Illustrations of extensibility marker use

SEQUENCE
                  {field1  TypeA,
                   field2  TypeB,
                   ... ! PrintableString : "See clause 50",
                   -- Version 2 material goes here.
                   ... ,
                   field3  TypeC}

        Figure II-10:  An insertion point between elements 2 and 3

Version brackets not only save bitsVersion brackets not only save bits
on the line but provide a historicalon the line but provide a historical
record of the additions that haverecord of the additions that have
been made to the protocol.been made to the protocol.

SEQUENCE
                  {field1  TypeA,
                   field2  TypeB,
                   ... ! PrintableString : "See clause 59",
                   -- The following is handled by old systems
                   -- as specified in clause 59.
                   [[ v2-field1  Type2A,
                      v2-field2  Type2B ]],
                   [[ v3-field1  Type3A,
                      v3-field2  Type3B ]],
                   ... ,
                   -- The following is version 1 material.
                   field3  TypeC}

        Figure II-11:  An insertion point with two version additions
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It should be noted that extensibility can be identified independently for each SEQUENCE, SET
and  CHOICE, even if these constructs are nested within other extensible constructs.  However,
within any one such construct there can be at most one insertion point at the outer level of that
construct, with material being successively added at the insertion point after any already inserted
material.

Version brackets should normally be employed even if there is only one element added, to provide a
clear documentation of the revision history.

Note also that version brackets can only be inserted in SEQUENCE, SET, and CHOICE
constructs, not in ENUMERATED or constraints.

At the time of writing this book (mid-1999), there are a number of published specifications that
have inserted extension markers, and some that contain added material and version brackets.

6  The {...} notation

You will encounter what appears to be an extensible empty "table constraint" (see later) in a
number of specifications.  This relates to the use of Information Object Classes, and discussion of
it is deferred until Chapter 7 of this Section.

7  Interaction between extensibility and tagging

When tagging was discussed in the previous chapter, it was noted that extensibility gave rise to
some further requirements on the distinctness of tags.

These requirements arise because if there are several extension markers in an ASN.1 type, they
may have different exception specifications associated with them, and it is therefore important for
version 1 systems to be able to unambiguously associate "foreign" material with a specific
insertion point and hence exception specification.

NOTE — Explanations given in this text may be hard to understand without a clear understanding of the
BER encoding rules.  Readers that are progressing sequentially through this book should either just accept
that there are further rules on tagging that are "ad hoc" and curious, or else read the text on BER and
return to this section.  Sorry!  I can do no better!

It is fortunate (as PER does not encode tags) that there are no problems in this area with a PER
encoding.  However, with BER, constructions like the following give real problems:

                Example1 ::= SEQUENCE
                        {field1  CHOICE
                                    {alt1  INTEGER,
                                     ...!1 } OPTIONAL,
                        ...!2 }

or
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                Example2 ::= CHOICE
                                {alt2  CHOICE
                                         {alt3 INTEGER,
                                          ...!3 },
                                 ...!4}

Now suppose that in version 2 additions are made at the insertion points with exception handling
!1 or !2.  If "field1" had not been optional it would have been easy - presence of foreign material
before the presence of "alt1" is clearly a !1 case, and after it a !2 case.  But with field1 being
optional, there is no way for version1 systems to determine whether we have new material at !1, or
!1 being missing and new material at !2.  A similar problem arises with new material at !3 or !4.

Note that the problem is not with the tag on any added material, the problem is fundamental to the
use of extensibility in these constructs.

Unless BER were to be changed (shrieks of horror - BER long precedes extensibility!) it is
necessary to make the two above (and other similar) constructs illegal.  How to do that?

The ASN.1 Specification adopts a slightly curious approach.  It says that wherever there is an
extension marker, you should add (at the end of any existing extensions) a "conceptual element"
whose tag matches that of no other element except other "conceptual element"s.  Then you apply
rules about when distinct tags are required, and if they are satisfied, you are legal (and there will
be no problems for a version 1 system to unambiguously assign foreign material to a single
insertion point).

In the first of the above cases, addition of the conceptual element in the !1 position means that
"field1" brings to the table both the INTEGER tag and the tag of the conceptual element.  The
latter clashes with the tag of the following (mandatory) conceptual element in the !2 position, so
the construction is illegal.

In the second of the above cases, "alt2" brings to the table the tag of the conceptual element (as
well as the INTEGER tag), which again clashes with the tag of the conceptual element in the
extension !4.  So again we have illegality.

(Please refer to Figure 999 again!)  It is important to note here that this is a distinct complexity
with extensibility.  Having given earlier advice that you should use AUTOMATIC TAGS, and then
forget about tagging, I am now saying (and the ASN.1 Specification is saying) that in order to
determine whether some extensibility constructions are legal or not requires that you have a fairly
sophisticated understanding of tagging.  Of course, if you use a tool such as that provided by OSS
to check your ASN.1, it will instantly tell you that you have broken the rules, although whether
you will understand the error message in these cases is more questionable!

So .... we need some simple advice:

• If a CHOICE is OPTIONAL in some SEQUENCE, make sure it is not the last element
before an extension marker, or make sure it is not itself extensible.  (And don't follow it by
another extensible CHOICE!)

• If a CHOICE is in a SET, make sure that only one of the CHOICE and the SET are
extensible.

• Never put an extensible CHOICE in another extensible CHOICE.
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In summary, treat extensible CHOICEs like radio-active material - keep them well apart, and
clearly separated from other extension markers!  If you do that, there will never be any problems.

These rules really are ad hoc, but they are simple to apply, and will eliminate the problems
described above.

Of course, if you break these rules, you are writing de jure illegal ASN.1, and a good tool will tell
you so, and probably refuse to encode it!  But if you encode it yourself .... well, problems only
arise in practice if you have different exception handling on the various extensions.  Just keep the
above points in mind, and you should be OK.

8  Concluding remarks

We have described the extension marker and its association with the exception specification, and
the complications arising from BER, which give rise to the need to produce some complex rules on
when apparently innocuous extension markers are illegal.

Finally, it is important to note that the interworking that extensibility provides between version 1
and version 2 systems is dependent on the extension marker being present in version 1, and in
changes being made to the protocol only as permitted by the extensibility provisions (addition of
elements, alternatives, enumerations, at the insertion point, and relaxation of constraints).

If changes are made to a specification that are not covered by the extensibility provisions (such as
random insertion of new elements), then the encodings of that new version are likely to produce
unpredictable effects if sent to a version 1 system.  Similarly, insertion of an extensibility marker
in version 2 which was not present in version 1 means that encodings of the version 2 material will
produce unpredictable effects if sent to version 1 systems.

The unpredictability described above may be simply between "Will they abort in some way or will
they ignore the apparent error?", but could be "With encodings of some version 2 values version 1
systems will think they are correct encodings of totally unrelated version 1 values" and will act
accordingly, which could be very dangerous.  So it is generally important to prevent encodings of
version 2 types that do not obey the extensibility rules from being sent to version 1 systems.  This
can, of course, be done in many ways, the most common being some form of version negotiation
when a connection is first established.

Extensibility and exception handling are powerful tools, and enable highly optimised encoding
rules to be used.  They are safe if the rules governing their use are obeyed.

It is, however, very important to insert extension markers fairly liberally into version 1
specifications (or to use the EXTENSIBILITY IMPLIED notation).
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Chapter 6
Information Object Classes,

Constraints, and Parameterization

(Or: Completing the incomplete - with precision)

Summary:

This chapter:

• provides a brief description of the concept of "holes" in protocols;

• describes briefly the ROSE (Remote Operations Service Element) protocol in order
to provide a specific example of the need to define types with "holes" in them, and
the need for notation to support clear specifications in the presence of "holes";

• provides a clear statement of the Information Object, Information Object Class,
and Information Object Set concepts, and the use of those Object Sets to complete
a partial protocol specification by constraining "holes" (and the consistency
relationships for filling in multiple holes) left in a carrier protocol.

It goes on to describe:

• the syntax for defining an Information Object Class, Information Objects, and
Information Object Sets, using a development of the wineco protocol as examples;

• the means by which defined Information Object Sets can be related to the "holes"
that they are intended to constrain, using a simplified version of the ROSE protocol
as an example;

• describes the need for parameterization, and the parameterization syntax of ASN.1
specifications.

It is supposed to be bad practice to tell a student that "what I am about to say is difficult"!  But the
information object concepts are among the more conceptually difficult parts of ASN.1, and we will
introduce these concepts gently in this chapter and fill in final details in the next chapter.  Just
skip-read this chapter if it is all too easy!
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1  The need for "holes" and notational support for them

1.1  OSI Layering

This is probably the first time in this book that Open
Systems Interconnection (OSI) has been seriously
discussed, although it was within the OSI stable that
ASN.1 was first standardised.

OSI was perhaps the first protocol suite specification to take seriously the question of documenting
its architecture, with the production of the OSI 7-layer model.  Many vendor-specific protocols
had some concept of layering, and the TCP/IP work had split off IP from TCP in the late 1970s,
but the OSI model was the most complete attempt at describing the concept of layering.

The 7-layer model was (in 1984) just the latest attempt to try to produce a simplification of the
(quite difficult) task of specifying how computers would communicate, by dividing the task into a
number of separate pieces of specification with well-defined links between those pieces of
specification.

Although this "architecture" was primarily aimed at making it possible for several groups to work
on different parts of the specification simultaneously, an important off-shoot was to provide re-
usability of pieces of specification.  This included re-usability of network specifications to carry
many different applications over the same network, or re-usability of application specifications to
run over many different network technologies, some of which may not have been invented when the
application specification was first written.

The reader should contrast this with the early so-called "link" protocols (mainly deployed in the
military arena, but also in telephony), where a single monolithic specification (document)
completely and absolutely defined everything from application semantics to electrical signalling.

In the International Standards Organization (ISO) 7-
layer model, each layer provided a partial
specification of messages that were being
transmitted, each message having a "hole" in it
(called user-data) that carried the bit-patterns of the
messages defined by the next higher layer.  However,
there was a "fan-out" and "fan-in" situation:   many
possible lower layers (for example, transport or
network protocols) could be used to carry any given
higher-layer messages, and any given transport (or network) could carry many different higher-
layer messages.  It was a very flexible many-to-many situation.

But the basic concept in the original ISO OSI model was that every application layer specification
would fill in the final hole - each application layer standard would produce a complete
specification for some application.

It was the CCITT 7-layer model (eventually adopted by ISO) that brought to the table the concept
of partial specifications of "useful tools" in the application layer, recognising a potentially infinite
set of layers, each filling in a "hole" in the layer beneath, but itself leaving "holes" for other groups
to fill in due course.

A diversion into humanA diversion into human
psychology:  Never write anythingpsychology:  Never write anything
that is complete - it limits itsthat is complete - it limits its
use!use!

OSI was full of holes!  EveryOSI was full of holes!  Every
layer of specification defined alayer of specification defined a
small part of the total message,small part of the total message,
then left a massive hole whichthen left a massive hole which
was to be filled in by bitswas to be filled in by bits
specified in the next higher layerspecified in the next higher layer
of specification.of specification.
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As ASN.1 increasingly became the notation of choice for defining application specifications, there
clearly became a need for support in ASN.1 for "holes".

1.2  Hole support in ASN.1

Forget about theoretical models for now.  It rapidly
became clear that people writing application
specifications using ASN.1 in 1984 wanted to be
able to write a "generic" or "carrier" specification,
with "holes" left in their datatypes, with other
groups (multiple, independent, groups) providing
specifications for what filled the holes.

At this point it is important to recognise that "leaving some things left undefined, for others to
define", can (most obviously) be an undefined part of the format of messages (the user-data in OSI
layering), or one of the elements in an ASN.1 sequence, but can also be an undefined part of the
procedures for conducting a computer exchange.  Both types of "holes" have occurred in real
specifications, and notation is needed to identify clearly the presence and nature of any "holes" in a
specification, together with notation for "user" specifiers to fill in the "holes".

There is one other important point:  if several different (user) groups provide specifications for
applications which fit in the holes of some carrier or generic protocol, it often happens that
implementations wish to support several of these user specifications, and need to be able to
determine at communication-time precisely which specification has been used to fill in the hole in a
given instance of communication.  This is rather like the "protocol id" concept in a layered
architecture.  We recognise the need for holes to carry not just some encoding  of information for
the user specification, but also an identification of that specification.

The earliest ASN.1 support for "holes" was with the notation "ANY", which (subject to a lot of
controversy!) was withdrawn in 1994, along with the "macro notation" which was an early and
largely unsuccessful attempt to relate material defining the contents of a hole (for a particular
application) to a specific hole occurrence (in a carrier specification).

In 1994, the ASN.1 "Information Object Class" and related concepts matured, as the preferred way
of handling "holes".  In this chapter we next introduce the concepts of ROSE (Remote Operations
Service Element), showing how ROSE had the need for notation to let its users complete the holes
left in the ROSE protocol.  We then briefly describe the nature of the information that has to be
supplied when a user of the ROSE specification produces a complete application specification.  We
then proceed to the concepts associated with ASN.1 "Information Object Classes".

2  The ROSE invocation model

2.1  Introduction

One of the earliest users of the
ASN.1 notation was the ROSE
(Remote Operations Service
Element) specification - originally

Holes did not stop at theHoles did not stop at the
application layer:  people wantedapplication layer:  people wanted
to write "generic" specificationsto write "generic" specifications
with "holes" left in.  And peoplewith "holes" left in.  And people
filling in those holes still wantedfilling in those holes still wanted
to leave a few further holes!to leave a few further holes!

INVOKE an operation (invocation id,INVOKE an operation (invocation id,
operation id, argument values), get back anoperation id, argument values), get back an
operation-independent REJECT (pre-definedoperation-independent REJECT (pre-defined
error codes) or a RESULT (invocation id,error codes) or a RESULT (invocation id,
result values) or an ERROR (invocation id,result values) or an ERROR (invocation id,
error code, parameters associated with theerror code, parameters associated with the
error).error).
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just called ROS (Remote Operations Service).  This still provides one of the easiest to understand
examples of the use of the Information Object Class concept, and a little time is taken here to
introduce ROSE.

The reader should, however, note that this treatment of ROSE is NOT complete, and that when
tables of information are introduced, the latest version of ROSE has many more columns than are
described below.  There have been a number of specifications that have written their own version
of ROSE, with some simplifications and/or with some extensions, so if you see text using
"OPERATION" or "ERROR", check where these names are being imported from.  They may be
imported from the actual ROSE specification, or they may be a ROSE "look-alike".  The
definitions in this text are a ROSE "look-alike" - they are a simplification of the actual ROSE
definitions.

A common approach to the specification of protocols by a number of standardization groups (of
which the latest is CORBA) is to introduce the concept of one system invoking an operation (or
method, or activating an interface) on a remote system.  This requires some form of message
(defined in ASN.1 in the case of ROSE) to carry details for the operation being invoked, the three
most important elements being:

• some identification of this invocation, so that any returned results or errors can be
associated with the invocation;  and

• some identification of the operation to be performed; and

• the value of some ASN.1 type (specific to that operation) which will carry all the
arguments or input parameters for the operation.

This is called the ROSE INVOKE message (defined as an ASN.1 type called "Invoke").  ROSE
introduced the concept of the "invocation identification" because it recognised that multiple
instances of (perhaps the same) operation might be launched before the results of earlier ones had
come back, and indeed that results might not come back in the same order as the order operations
where launched in.

It is important here to note that the ROSE specification will define the concepts, and the form of
the invocation message, but that lots of other groups will independently assign values to identify
operations, define the ASN.1 type to carry the arguments or input parameters, and specify the
associated semantics.   They need a notation to do this, and to be able to link such definitions
clearly to the holes left in the ASN.1 definition of the ROSE INVOKE message.

Used in this context, ASN.1 is being used as what is sometimes called an "Interface Definition
Language" (IDL), but it is important to remember that ASN.1 is not restricted to such use and can
be applied to protocol definition where there is no concept of remote invocations and return of
results.

The INVOKE message itself is not a complete ASN.1 type definition.  It has a "hole" which can
carry whatever ASN.1 type is eventually used to carry values of the arguments of an operation.
This "hole", and the value of the operation code field in the INVOKE message, clearly have to be
filled-in in a consistent manner - that is, the op-code and the type must match.
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2.2  Responding to the INVOKE message

The ROSE concept says that an INVOKE message may
be responded to by a REJECT message, carrying
operation-independent error indications, such as
"operation not implemented" (strictly, "invoke-
unrecognisedOperation"), "system busy" (strictly,
"resourceLimitation"), etc).  ROSE has about 40 different error or problem cases that can be
notified with a REJECT message.

If, however, there is no such message, then the operation is successfully invoked and will result in
an "intended result" (the RESULT message) or an operation-dependent "error response" (the
ERROR message).

ROSE invocation is illustrated in figure II-12.

This separation of "intended result" and "error response" is not strictly necessary, but simplifies
the ASN.1 definition.  The assumption here is that any one group will be defining a number of
closely-related operations, each of which will have an identification and precisely one ASN.1 type
to carry the input arguments in the INVOKE message hole, and precisely one ASN.1 type to carry
the output arguments in the RESULT message hole.  However, for this complete set of operations,
there are likely to be a set of possible error returns, such that any given operation can give rise to a
specified subset of these errors.  For each error we need an error code, and an ASN.1 type to carry
additional information (which ROSE calls parameters) about the error, and of course we need to be
able to specify which errors can arise from which operations.

ROSE messages are full ofROSE messages are full of
holes - except for REJECT,holes - except for REJECT,
which is complete!which is complete!

Invoke message

followed by:

Reject message

or by:

ReturnResult message

or by:
ReturnError message

Figure II-12:  Rose message exchanges
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3  The use of tables to complete the user specification

We return here to our wineco protocol, and will
first use an informal tabular format to show how
we use the ROSE (incomplete) protocol to support
our wineco exchanges.  We have already specified
two main messages using ASN.1, namely

        Order-for-stock
and     Return-of-sales

We will add, without defining the ASN.1 types themselves, two further wineco messages we might
wish to pass with a ROSE INVOKE, namely

        Query-availability
and     Request-order-state

The first of these messages queries the availability of items for immediate delivery, and the second
asks for an update on the state of an earlier order.

We will make all four of these messages a ROSE operation, which will either produce a response
or an error return.  The response to an "Order-for-stock" will be an "Order-confirmed" message.
Successful processing of a "Return-of-sales" will result in an ASN.1 NULL being returned.  The
response to "Query-availability" will be an "Availability-response" and the response to a "Request-
order-state" will be an "Order-status" response.

We envisage that some or all of these requests (operations) can produce the following errors (in
each case with some additional data giving more details of the failure):

• Security check failure.

• Unknown branch.

• Order number unknown.

• Items unavailable.

Note that there are other operation-independent errors carried in the ROSE Reject message that are
provided for us by ROSE, but we do not need to consider those.  Here we are only interested in
errors specific to our own operations.

We need to say all this rather more formally, but we start by doing it in an informal tabular form
shown in figures II-13 and II-14.

In the figures, names such as "asn-val-....." are ASN.1 value reference names of a type defined by
ROSE (actually, a CHOICE of INTEGER or OBJECT IDENTIFIER) used to identify operations
or errors, and names such as "ASN-type-...." are ASN.1 types that carry more details about each
of our possible errors.  Note that in the case of the error "Order number unknown", we decide to
return no further information, and we have left the corresponding cell of the table empty.  We could
have decided to return the ASN.1 type NULL in this case, but the element in the ROSE
"ReturnError" SEQUENCE type that carries the parameter is OPTIONAL, and by leaving the cell
of our table blank, we indicate that that element of the "ReturnError" SEQUENCE is to be omitted
in this case.  We will see later how we know whether we are allowed to leave a cell of the table
empty or not.

Expressing wineco exchanges as aExpressing wineco exchanges as a
set of remote operations - youset of remote operations - you
don't have to, but it might bedon't have to, but it might be
simple and convenient.simple and convenient.
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The figure II-13 table has one row for each possible error, and has just two columns:

• the error codes assigned (as values of the type determined in the ROSE specification); and

• the corresponding ASN.1 type (defined in our module) to carry parameters of the error.

We might normally expect a small number of rows for this table for any given application that uses
ROSE to define its protocol (in our case we have four rows), and it may be that for some errors
there is no additional parameter information to return, and hence no ASN.1 type needed for
parameters of that error, as in the case of "asn-val-unknown-order".

The table in figure II-14 is the other information needed to complete the ROSE protocol for our
wineco application.  It lists an operation code, which is again a value of the type - as specified by
ROSE:

                CHOICE {local INTEGER,
                        global OBJECT IDENTIFIER}

together with the ASN.1 type that carries the input arguments for the operation, together with the
ASN.1 type that carries the result values, together with a list of the errors that the operation can
generate.

In the real ROSE specification, there are additional columns to assign a priority value for
operations and for error returns, to identify so-called "linked operations", and to determine whether
results are always returned, values of error parameters needed, and so on. Discussion of these
details of ROSE would go beyond the scope or the needs of this text, and we have not included
these features in the illustration.

 Error Code                         Parameter Type
             ==========                         ==============
         asn-val-security-failure        ASN-type-sec-failure-details
         asn-val-unknown-branch          ASN-type-branch-fail-details
         asn-val-unknown-order
         asn-val-unavailable             ASN-type-unavailable-details

       Figure II-13:  The wineco ERROR table

Op Code        Argument Type       Result Type           Errors
======         =============       ===========           ======
asn-val-order  Order-for-stock     Order-confirmed       security-failure
                                                         unknown-branch
asn-val-sales  Return-of-sales     NULL                  security-failure
                                                         unknown-branch
asn-val-query  Query-availability  Availability-Response security-failure
                                                         unknown-branch
                                                         unavailable
asn-val-state  Request-order-state Order-status          security-failure
                                                         unknown-branch
                                                         unknown-order

                Figure II-14:  The wineco OPERATION table
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Given then the ROSE concept of messages (ASN.1 datatypes) with "holes" in them, we see

• The need for a syntax for ROSE to specify the information its users need to supply to
complete the ROSE datatypes by the specification of a number of operations and errors
(definition of the number and form of the above tables).

• The need for a strict ASN.1 syntax (machine-readable) for ROSE users to specify the
information shown informally in figures II-13 and II-14.

• The need for notation in ASN.1 to identify "holes" in ASN.1 types, and to link the
information shown in figures II-13 and II-14 clearly with the "hole" it is intended to
complete.

3.1  From specific to general

In the general case, there may be many
different tables needed to complete any
given "generic" protocol, and each table
will have a number of columns determined
by that "generic" protocol.  The nature of
the information needed for each column of
the table (and the column headings to
provide a "handle" for each piece of
information) will all vary depending on the
"generic" protocol in question.

Thus the specifier of a "generic" protocol needs a notation which will provide a clear statement of
the form of the tables (the information needed to complete the "generic" protocol).  We call the
specification of this the specification of Information Object Classes.  When a user of the
"generic" protocol provides information for a row of a table we say that they are specifying an
Information Object of the class associated with that table.   The total set of rows of a given table
defined to support any one user specification is called an Information Object Set.

Notation is thus needed in ASN.1 for:

• The definition of a named Information Object Class (the form of a table).

• The definition of named Information Objects of a given class (completing the information
for one row of the table).

• Collecting together all the Information Objects (of any given class) defined in a
specification into a named Information Object Set (a completed table).

• Linking a named information object set to the "holes" in the carrier protocol that it is
designed to complete.

ROSE is just one example of incompleteROSE is just one example of incomplete
(generic) protocols.  There are many(generic) protocols.  There are many
other examples where specifiers leave it toother examples where specifiers leave it to
others to complete the specification, andothers to complete the specification, and
need to be able to (formally) say whatneed to be able to (formally) say what
additional information is needed.  Thisadditional information is needed.  This
is an Information Object Classis an Information Object Class
specification.specification.
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4  From tables to Information Object Classes

The table metaphor is a very useful one in
introducing the Information Object Class
concepts, but the term "table" is not used in the
ASN.1 Standard itself (except in the term "table
constraint", discussed later).

We say that each Information Object has a series of fields, each with a field name.  Defining an
Information Object Class involves listing all the fields for objects of that class, giving the field-
name for each field, and some properties of that field.  The most important property is the nature
of the information needed when defining that field.  This is most commonly the specification of
some ASN.1 type (with the semantics associated with that type), or the specification of an ASN.1
value of some fixed ASN.1 type.  We will, however, see later that there are a number of other sorts
of fields that can be defined.

In the case of ROSE, we have two Information Object Classes defined by ROSE, the
OPERATION class and the ERROR class.  (Names of Information Object Classes are required to
be all upper-case).

All objects of class OPERATION will have four fields containing:

• A value of type

                CHOICE {local  INTEGER,
                        global OBJECT IDENTIFIER}

to identify the operation.

• An ASN.1 type capable of carrying input values for the operation.

• An ASN.1 type capable of carrying the result values on successful completion of the
operation.

• A list of information objects of class ERROR, each of which is an error that this particular
operation can produce.

All objects of class ERROR will have two fields containing:

• A value of type

                CHOICE {local  INTEGER,
                        global OBJECT IDENTIFIER}

to identify the error.

• An ASN.1 type capable of carrying the values of the parameters of the error.

To summarise:  An Information Object Class definition defines the amount and form of
information that is needed to specify an object of that class.  An Information Object definition
provides that information. The nature of the information needed can be very varied, and we talk
about the form of the fields of the Information Object Class according to the information needed
for that field when defining an Information Object.

Tables are fine for human-to-humanTables are fine for human-to-human
communication.  For computercommunication.  For computer
processing we use ASN.1 notation toprocessing we use ASN.1 notation to
define the form of tables and thedefine the form of tables and the
contents of those tables.contents of those tables.
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In the above discussion, we have introduced:

• type fields:  Fields that need an ASN.1 type definition to complete them.

• fixed type value fields:  Fields that need the value of a single (specified) ASN.1 type to
complete them.

• object set fields:  Fields that need a set of information objects of a single (specified)
Information Object Class (in this case the ERROR class) to complete them.

There are a number of other forms of field that can be specified when defining an Information
Object Class, and we shall see more of these later.

If you see names in all upper case, you can be reasonably sure that you are dealing with
Information Object Classes, but another certain way to tell is the presence of names beginning with
the & (ampersand) character.  In order to avoid confusion with other pieces of ASN.1 notation, the
names of fields of Information Object Classes are required to begin with an &.  Thus the field of
the OPERATION class that contains the object identifier value for some particular operation is
called:

                OPERATION.&operationCode

The field that has to be supplied with a type definition for the arguments of the INVOKE message
is called:

                OPERATION.&ArgumentType

Note that the &operationCode field contains a single ASN.1 value, and after the & we have a
lower-case letter (this is a requirement), whilst the &ArgumentType field contains an ASN.1 type,
and after the & we have an upper-case letter (again a requirement).  Where a field contains a
single value (usually - but not always - of some fixed type) or a single information object (of some
fixed class) the field-name after the & starts with a lower-case letter.  Where a field contains
multiple values or multiple information objects (as with the list of errors for an operation), the
field-name after the & starts with an upper-case letter.  It is important to remember these rules
when trying to interpret the meaning of an ASN.1 Information Object Class definition.

We have already seen that names of Information Object Classes are required to be all upper case.
Names given to individual Information Objects are required to start with a lower case letter
(similar to value references), and names given to Information Object Sets (collections of
Information Objects of a given class) are required to start with an upper case letter.

There is in general a strong similarity between the concepts of types, values, and sets of values
(subtypes), and the concepts of Information Object Classes, Information Objects, and Information
Object Sets, and naming conventions in relation to the initial letter of names follow the same rules.

There is, however, an important difference between types and information object classes.  All
ASN.1 types start life populated with a set of values, and new types can be produceced as subsets
of these values.  Information Object Classes have no predefined objects, they merely determine the
notation for defining objects of that class, which can later be collected together into information
object sets, which are really the equivalent of types.

When you define a class you provide it with a reference name, and similarly for Information
Objects and Information Object Sets.  These reference names can then be used in other parts of the
ASN.1 notation to reference those classes, objects, and sets, just like type reference and value



198                                                                                                                           © OSS,31 May 1999

reference names are assigned to type and value definitions and then used elsewhere.  Reference
names for classes, objects, and object sets are imported and exported between modules in the
IMPORTS and EXPORTS statements just like type and value reference names.

5  The ROSE OPERATION and ERROR Object Class definitions

Figure II-15 shows a simplified form of the definition of
the OPERATION and ERROR classes of ROSE, and is
the first introduction of the actual ASN.1 syntax for
defining Information Object Classes.

Remember, this syntax is essentially defining the table
headings and the information content of the informal
tables shown in II-13 and II-14, but it is doing it with a
syntax that is similar to ASN.1 type and value definition syntax, and which is fully machine-
processable.

In figure II-15, we see the definition of four fields for OPERATION and two for ERROR, as
expected.   Compare that figure with the table headings of figures II-13 and II-14, and let us go
through the fields in detail.  (Remember, each class definition corresponds to the definition of the
form of a table, and each field corresponds to the definition of the form of a column of that table.)

For the OPERATION class, we have the "&operationCode" field, which is required to be
completed with a value of the specified type.  (It is called a fixed type value field).  This field is
also flagged as "UNIQUE".  When defining an object of this class, any value (of the specified
type) can be inserted in this field, but if a set of such objects are placed together to form an
Information Object Set (using notation we will see later), there is a requirement (because of the
"UNIQUE") that all values in this field are different for each object in the set.  If you regard the
object set as representing a completely filled in table, then in database terminology, fields marked
"UNIQUE" provide a key or index into the table.  More than one field can be marked "UNIQUE"
(but this is uncommon), but there is no mechanism in the notation to require that the combination
of two fields has to be unique within an information object set. If you needed to specify that, you
would have to use comment within the class definition.

At last!  We get to see anAt last!  We get to see an
example of a real Informationexample of a real Information
Object Class definition.  TwoObject Class definition.  Two
in fact!  The OPERATIONin fact!  The OPERATION
class and the ERROR classclass and the ERROR class
from ROSE.from ROSE.

   OPERATION ::= CLASS
                  {&operationCode  CHOICE {local INTEGER,
                                           global OBJECT IDENTIFIER}
                                   UNIQUE,
                   &ArgumentType,
                   &ResultType,
                   &Errors   ERROR OPTIONAL }

                ERROR ::= CLASS
                   {&errorCode   CHOICE {local INTEGER,
                                        global OBJECT IDENTIFIER}
                                UNIQUE,
                    &ParameterType   OPTIONAL }

          Figure II-15:   The OPERATION and ERROR class definitions
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The next two fields, "&ArgumentType" and "&ResultType" have names which begin with a capital
letter, and no type definition after them.  This means that they have to be completed by the
specification of an ASN.1 type (usually, but not necessarily, by giving a type reference rather than
an explicit definition of a type).

The fourth and last field is more interesting.  "&Errors" begins with a capital letter, so you
complete it with a set of things.  But the name following is not an ASN.1 type reference, it is a
class reference.  So this field requires to be completed with a set of Information Objects of that
(the ERROR) class, defined next.  This field is also flagged as "OPTIONAL".  This means that in
the definition of objects of this class, it is not a requirement to define information for this field - it
can be left blank.  This would imply that the corresponding operation never produced a
"ReturnError" response.

It is left to the reader to examine the definition of the error class, which should now be
understandable.

6  Defining the Information Objects

Let us now use the notation for defining objects
of a defined class (in this case OPERATION and
ERROR).  We take the informal definition of
operations and errors given in figures II-13 and
II-14 and express them in the ASN.1 notation for
defining objects.  This is shown in figure II-16
(the ERROR objects) and II-17 (the
OPERATION objects).

These figures should be fairly understandable, and a line-by-line commentary will not be given, but
there are some points to which the reader's attention is drawn.

Note that the left of the "::=" looks rather like the definition of a value reference - compare:

The Information Object ClassThe Information Object Class
definition tells you what informationdefinition tells you what information
you need to provide in order toyou need to provide in order to
define an OPERATION or andefine an OPERATION or an
ERROR object.  Now we see theERROR object.  Now we see the
syntax you use to define suchsyntax you use to define such
objects.objects.

   sec-fail ERROR ::=
         {&errorCode  asn-val-security-failure,
          &ParameterType  ASN-type-sec-failure-details}

         unknown-branch ERROR ::=
         {&errorCode  asn-val-unknown-branch,
          &ParameterType  ASN-type-branch-fail-details}

         unknown-order ERROR ::=
         {&errorCode  asn-val-unknown-order}

         unavailable ERROR ::=
         {&errorCode  asn-val-unavailable,
          &ParameterType  ASN-type-unavailable-details}

    Figure II-16:  Definition of the wineco ERROR Information Objects
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                my-int-val INTEGER ::= 3

which is read as "my-int-val of type INTEGER has the value 3".  In a similar way, we read figures
II-16 and II-17 as (for example) "sec-fail of class ERROR has the fields ...".  Following the "::="
we list (in curly brackets) each of the fields in the class definition, in order, and separated by
commas, giving in each case the name of the field and the definition of that field for this particular
object.

Note also that the "unknown-order" ERROR object has no definition for the &ParameterType field
- this is permissible only because that field was marked OPTIONAL in the class definition of
figure II-15.

Turning to the "&Errors" field, note that when we want to define a set of errors, we use a list of
reference names separated by a vertical bar and enclosed in curly brackets.  This may seem less
intuitive than if a comma had been used as the list separator, but is in fact a special case of a much
more powerful mechanism for grouping objects into sets using set arithmetic (see below).  The
vertical bar is used for set UNION, so we are producing a set for the "&Error" field of "order"
which is the union of "security-failure" and "unknown-branch".

Finally, note that the names used in the definition of the "&Error" fields are themselves defined as
errors in figure II-16.  Those definitions would be in the same module as the figure II-17
definitions, or would be imported into that module.

     order OPERATION ::=
       {&operationCode   asn-val-order,
        &ArgumentType    Order-for-stock,
        &ResultType      Order-confirmed,
        &Errors          {security-failure |
                          unknown-branch }}

     sales OPERATION ::=
       {&operationCode   asn-val-sales,
        &ArgumentType    Return-of-sales,
        &ResultType      NULL,
        &Errors          {security-failure |
                          unknown-branch }}

     query OPERATION ::=
       {&operationCode   asn-val-query,
        &ArgumentType    Query-availability,
        &ResultType      Availability-Response,
        &Errors          {security-failure |
                          unknown-branch |
                          unavailable }}

     status OPERATION ::=
       {&operationCode   asn-val-state,
        &ArgumentType    Request-order-state,
        &ResultType      Order-status,
        &Errors          {security-failure |
                          unknown-branch |
                          unknown-order }}

   Figure II-17:  Definition of the wineco OPERATION Information Objects
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The figure II-16 and II-17 definitions may appear more verbose (they are!) than the informal
tabular notation used in figures II-13 and II-14, however, they are very explicit, but more
importantly they are machine-readable, and ASN.1 tools can process them and use these
definitions in checking and decoding the content of "holes" in incoming messages.

7  Defining an Information Object Set

Why do we need to combine the definition of
individual Information Objects into an Information
Object Set?  Well, we saw a use of this in defining
the "&Errors" field of the OPERATION class
above, but there is a more important reason.  The
whole purpose of defining Information Object
Classes and Information Objects is to provide an
ASN.1 definition of the complete (informal) table
we saw earlier that determines what can fill in the holes in a carrier or generic protocol, and to link
that ASN.1 definition to the "holes" in the generic or carrier protocol.

So we need a notation to allow us to define Information Object Sets (collections of Information
Objects of a given class), with a name assigned to that set which can be used elsewhere in our
specification.

Information Object Sets are collections of Information Objects, much as types can be seen as
collections or sets of values.  So it is not surprising that the names for Information Object Sets are
required to start with an upper-case letter.  If we want a name for the collection of operations we
have defined in Figure II-17, we can write:

                My-ops OPERATION ::= {order  |
                                      sales  |
                                      query  |
                                      status }

Read this as "My-ops of class OPERATION is the set consisting of the union of the objects order,
sales, query, and status".

This is the most common form, but general set arithmetic is available if needed.  Suppose that A1,
A2, A3, and A4 have been defined as Information Object Sets of class OPERATION.  We can
write expressions such as:

                New-Set OPERATION ::= {(A1 INTERSECTION A2)
                                       UNION (A3 EXCEPT A4) }

but as a colleague of mine frequently says:  "No-one ever does!"

If you leave the brackets out, the most binding is EXCEPT, the next INTERSECTION, and the
weakest UNION.  So all the round brackets above could be omitted without change of meaning,
but it is usually best to include them to avoid confusing a reader.  (Some people seem to find it
intuitive that "EXCEPT" should be the least binding, so clarifying brackets when "EXCEPT" is
used are always a good idea.)

The next step on the way.  SomeoneThe next step on the way.  Someone
has defined some Information Objecthas defined some Information Object
Classes.  We define someClasses.  We define some
Information Objects.  Now we pullInformation Objects.  Now we pull
them together into a namedthem together into a named
Information Object Set.Information Object Set.
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I won't bore you with a long-winded example of the result for various sets A1 to A4 - invent your
own and work it out - or ask your teenage daughter to help you!

The caret character "^" is a synonym for "INTERSECTION", and the vertical bar character "|" is
a synonym for "UNION".  There is no single character that is a synonym for EXCEPT - you must
write that out in full.

We have already noted the similarity between Information Objects and values, and Information
Object Sets and types or subtypes (collections of values).  Where do classes fit into this pattern?
This is less clear cut.  Information Object Classes are in some ways like types, but unlike types,
they start off with no Information Objects in them, merely with a mechanism for the ASN.1 user to
define objects of that class.  By contrast, built-in types come with a ready-made collection of
values and value notation, from which you can produce subsets using constraints.

Nonetheless, because of the similarity of objects and values, when ASN.1 was extended to
introduce the information-object-related concepts, it was decided to allow the same syntax as was
introduced for defining sets of objects to be used for defining sets of values (subsets of some type).
Because of this, the so-called value set assignment was introduced into the ASN.1 syntax.  This
allows you to write (should you so wish!):

                First-set INTEGER ::= {0..5}
                Second-set INTEGER ::= {10..15 UNION 20}
                Third-set INTEGER ::=
                  {First-set UNION Second-set EXCEPT 13}
                Fourth-set INTEGER ::= {0..5 | 10..12 | 14 | 15 | 20}

"Fourth-set" is, of course, exactly the same subset of INTEGER as is "Third-set".

It is testing time!  Or put it another way, time for some fun!  With the above definitions, can I
write

                selected-int Fourth-set ::= 14

and as an element of a SEQUENCE

                 Third-set DEFAULT selected-int

Yes you can!  This question of *exactly* what is legal ASN.1 in such cases has vexed the
Standards group for several years, but is now largely resolved.  It is, however, best to rely on a
good tool to give you the answer, rather than to pore over the Standard text itself!  Or maybe better
still to keep your ASN.1 simple and straightforward!

Before we leave this sub-clause, let us look at "My-ops" again.  It is likely that in a future version
of the wineco protocol, we will want to add some additional operations, and hence to extend "My-
ops".  This has implications for version 1 systems, which will need to have some defined error-
handling if they are requested to perform an operation that they know nothing about.  We will see
in a moment the way the error handling is specified, but first we need to indicate that "My-ops"
may be extended in the future.  We do this by re-writing it as:

                My-ops OPERATION ::= {order  |
                                      sales  |
                                      query  |
                                      status , ... }

with a possible version 2, with an added operation "payment", being written:
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                My-ops OPERATION ::= {order  |
                                      sales  |
                                      query  |
                                      status , ..., payment }

8  Using the information to complete the ROSE protocol

Lets get back to our main theme.  Designers of
"generic" protocols want to have elements of
SEQUENCES and SETS that they do not define.
They want other groups to define the types to fill
these positions.  Frequently the other groups will
want to carry many different types in these
elements at different times.  The Information
Object concepts enable the definition of the types
that will fill these elements.  But how are these "holes" identified in an ASN.1 type definition?
And how are the Information Object (Set) definitions linked to the "holes"?

Largely for historical reasons, ASN.1 takes a three-stage approach to this problem.  The first step
is to allow reference to a field of an Information Object Class to be used wherever an ASN.1 type
(or in some cases an ASN.1 value) is required.  The second stage is to allow an Information Object
Set to be used as a constraint on such types, requiring that that element be a type (or a value)
from the corresponding field of that Information Object Set.  This is called a table constraint.   The
third step is to allow (additionally) two or more elements of a SET or SEQUENCE (that are
defined as fields of the same Information Object Class) to be linked using a pointer between them
(the "@" symbol is used to provide the link).  Use of this linking mechanism says that the linked
fields have to be filled consistently in accordance with some Information Object of the constraining
Information Object Set.  In other words, that the linked fields have to correspond to cells from a
single row of the defining table.  Constraints expressing a linkage between elements are called
relational constraints.

Figure II-18 shows a (simplified) ROSE "Invoke" datatype, illustrating these features.  It uses the
Information Object Set "My-ops" (of class OPERATION), defined above, in the table and
relational constraints on the elements of "Invoke".

Figure 18 is quite complex!  Take it a step at a time.  The "opcode" element of the sequence says
that it is a value from the "&operationCode" field of the class "OPERATION".  In itself, this is
just a synonym for

No point in defining classes,No point in defining classes,
objects, and object sets unless theyobjects, and object sets unless they
are going somewhere.  After-all,are going somewhere.  After-all,
you can't encode them and send themyou can't encode them and send them
down the line.  So what good aredown the line.  So what good are
they?  Answer:  to fill in holes.they?  Answer:  to fill in holes.

   Invoke ::= SEQUENCE
           { invokeId   INTEGER,
             opcode     OPERATION.&operationCode
                         ({My-ops} ! invoke-unrecognisedOperation),
             argument   OPERATION.&ArgumentType
                         ({My-ops}
                          {@opcode} ! invoke-mistypedArgument) OPTIONAL }

               Figure II-18:  The ROSE Invoke datatype
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                CHOICE
                  {local INTEGER,
                   global OBJECT IDENTIFIER}

because this is a fixed-type value field of this type.  Or to put it another way, all values of this
field are of this type.

However, by referencing the type through the field of the Information Object Class, we are then
allowed to constrain it with an Information Object Set ("My-ops") of that class.  (Such a constraint
would not be allowed if we had simply written the element as "CHOICE ... etc".)

The curly brackets round "My-ops" are a stupidity (sorry - there are a few!) in the ASN.1 syntax.
The requirement here is for the syntactic construct "ObjectSet".  A reference name for an object
set (which is what "My-ops" would be) is not allowed.  However, we can generate an "ObjectSet"
from "My-ops" by importing "My-ops" into an object set definition, that is to say, by enclosing it
in curly brackets.

Put simply, there is no good reason for it, but you have to put the curly brackets in!

The effect of the "My-ops" constraint is to say that the only values permitted for this element are
those assigned to the "&operationCode" field one of the Information Objects of "My-ops".  In other
words, the field must contain an op-code for one of the four (in version 1) operations defined for
wineco.  This is all fully machine-readable, and encoders/decoders can use this specification to
help with error checking.

The "!" introduces an exception specification, and says that if this constraint is not satisfied (a
different op-code value appears), the error handling is to return a REJECT with the integer value
"invoke-unrecognisedOperation".  The designers of the wineco protocol need not concern
themselves with specifying such error handling.  This is all done within the ROSE specification.
Note that this is precisely the error situation that will arise if a version 1 implementation is hit with
a request to perform the "payment" operation.

Now we move onto the "argument" element.  This is the true "hole".  In its unconstrained form, it
simply says that this element can be "any ASN.1 type" (because any ASN.1 type can be used for
this field of an Information Object of the OPERATION class).  Such notation is described in
ASN.1 as "Open Type" notation, and is handled rather specially by encoding rules.

In particular, it is important that encodings enable a decoder to find the end of an open type
encoding before they know in detail what type is encoded within it (the "opcode" element of the
SEQUENCE could have been written after the "argument" element - there is no restriction).

In BER, there is no problem - the end of an encoding can always be determined using the "L" field
of the "TLV", for all ASN.1 BER encodings of types.  In PER, however, this is not the case.
Unless a decoder knows what the type being encoded is, it cannot find the end of the encoding of a
value of the type.  So in PER, an extra "length" wrapper is always added to an open type.

As an aside, you will sometimes find people deliberately defining an element as an open type
(typically using a class with just one field, a type field), and then constraining that element to be a
single fully-defined ASN.1 type.  The sole purpose of this is to produce the additional length
wrapper, and relates to implementation architecture.  Such constructs are used to encapsulate
security-related data, where the implementation architecture is likely to be to pass an encapsulated
set of octets to a security kernel, with the insecure part of the application having no detailed
knowledge of the security-related data.  (Government Health Warning  - Figure 999 - again - you
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must judge for yourself whether such provision is sensible or not.  It happens.  At worst it just
means an unnecessary length field!)

Finally, we address the "@" part of "argument".  This turns the constraint into a relational
constraint, linking the "argument" and "opcode" fields, and requiring them to be consistent with
some row of the constraining table.  (Whoops!  To be consistent with some object in the
constraining Information Object Set - let's use the correct terminology!).

The "@" construction could equally well, and with the same effect, have been placed on the
"opcode" field (as well, or instead of). All that is being formally said is that the two (and there
could be more) linked fields have to be consistent with an object in the set.  We know, of course,
that "OPERATION.&operationCode" was defined as "UNIQUE" in the class definition, so there
will be at most one object in the Information Object Set that matches a value in the "opcode" field
of the "Invoke" message.  In the general case, this is not necessarily true, and the only requirement
is that the values and/or types of linked fields are consistent with at least one of the information
objects in the constraining object set (consistent with at least one row of the constraining table).

Finally, note the "invoke-mistypedArgument" error return. In BER, there is a lot of redundancy in
an encoding, and it can usually be easily detected if an encoding does not represent a value of the
type we think it should (or might) be.  In PER, this is not so often the case, as there is much less
redundant encoding.  In PER, the main detection of "invoke-mistypedArgument" will be if the
encoding of the open type (as determined by the added length field) does not have the right length
for some value of the type we are trying to match it with (the one identified by the "opcode" value).

There is always an argument among protocol designers on the extent to which one should specify
the actions of an implementation on receipt of erroneous material (presumably from a bust sending
implementation, or due to the very very rare occurrence of undetected errors in lower layers), or
whether such actions should be left as implementation-dependent.  ASN.1 provides notation to go
in either direction.  ROSE chose to be very prescriptive on error handling, and made full use of
ASN.1 exception handling to specify the required behaviour on receipt of "bad" material.  If you
are a protocol designer, this is a decision for you to take.  ASN.1 gives you the tools to be
prescriptive, but there is no requirement to use those tools, and many specifiers choose not to.

Note that there is a certain difference between the "!" on the opcode element and that on the
"argument" element.  In the first case we know it can get activated if a version 2 system tries to
invoke "payment" on a version 1 system.  In the second case it should never get activated if
systems are conforming and lower layer communications are reliable.

9  The need for parameterization

I wonder how many readers noticed that the
above, whilst looking attractively precise and
implementable, recognised the major problem
with it?

If we were to re-write the whole of ROSE in
our wineco specification, the above would work fine.  We might have a series of modules defining
our main types, as illustrated in earlier chapters (call these MAIN modules) and another module
defining the OPERATION and ERROR classes, and the "Invoke", "Reject", "ReturnResult", and
"ReturnError"  (call this the ROSE module).  Then we have a final module (call this the
INFORMATION OBJECTS module) that defines our information objects and the "My-op" set.

But unfortunately it just doesn't work!But unfortunately it just doesn't work!
Lot's of people are defining their ownLot's of people are defining their own
"My-op" object sets, but there is just"My-op" object sets, but there is just
one ROSE specification of "Invoke"!one ROSE specification of "Invoke"!
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From MAIN we export all our top-level wineco types.  From the ROSE module we export our
Information Object Class definitions.  In the INFORMATION OBJECTS module we import the
Information Object Class definitions, and export "My-op".  Finally, in the ROSE module, as well
as exporting the class definitions, we import "My-op" for use in the "Invoke" etc messages as
described above, and define our top-level PDU that now defines our wineco abstract syntax as:

                wineco-PDU ::= CHOICE
                  {invoke   Invoke,
                   reject   Reject,
                   result   ReturnResult,
                   error    ReturnError }

We have a complete and working protocol.

But this approach does not work if we want the ROSE specifications to be published totally
separately from the wineco specification, with lot's of different applications (of which wineco
would be just one) wanting to produce a ROSE-based specification.  Copying the ROSE text for
each application would not be a good idea!  (That said, there are specifications about that define
their own ROSE-equivalent classes and PDUs, usually in a simplified form, simply because they
wish to be complete in their own right and to have control so that the ROSE part cannot change
under their feet.  This "copying with simplification" occurs with other popular specifications, not
just with ROSE.)

If the ROSE specification is to be independent of the wineco application, then clearly it cannot
import the "My-op" type.  How then can it supply a constraint to say how the hole is to be filled
in?

Here we introduce a new and very powerful ASN.1 concept, that of parameterization.

All programmers are fully familiar with the concept of functions or subroutines or methods having
a set of dummy parameters which are referred to in the body of the function or subroutine or
method specification.  When those functions or subroutines are called, the calling code supplies a
set of actual parameters that are used instead of the dummy parameters for that call.

ASN.1 has a very similar concept.  When we define a type, such as the ROSE "Invoke" type, we
can list after the type name a dummy parameter list.  These dummy parameters can then be used
on the right-hand side of the type definition as if they were normal reference names.  We call such
a type a parameterised type, and we can export parameterised types (for example from the
generic ROSE specification, with import into one or more application specifications like wineco).
In the importing specification (or anywhere else the parameterised type is used) we supply an
actual parameter specific to that use.  Figure II-19 shows the ROSE module, and Figure II-20 the
wineco module.  Note that now all exporting is from ROSE - ROSE does no imports at all.
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There are a few points to notice in figure II-19.  We could have exported separately the Invoke,
Reject, ReturnResult, and ReturnError messages, but we chose to bundle these together as a
"Rose-PDU" CHOICE type and to export that.  This meant that "Rose-PDU" had to be
parameterised with the "User-ops" dummy parameter, with that dummy parameter supplied as the
actual parameter to the use of Invoke and ReturnResult and ReturnError within that CHOICE.
Invoke, ReturnResult and ReturnError slightly confusingly use the same name for their dummy
parameter, which is then used for the table and relational constraint.  This situation of having a
dummy parameter being passed down through a chain of nested type definitions is quite common,
and it is also quite common for the same name to be used each time, but please note that formally
these are distinct names - as you would expect, the scope of a dummy parameter name is limited to
the right-hand side of the parameterised type.

Note also the occurrence of "{}" after Rose-PDU in the EXPORTS list (and later in the IMPORTS
list of Figure II-20).  This is not a requirement, but helps to clarify for a human reader that this is
a parameterised type.

The dummy parameter list in this case has just one dummy parameter (if there were more it would
be a comma-separated list), and here we see the syntax for a dummy parameter that is an
Information Object Set.  It is the class name ("OPERATION"), a ":" (colon), then the dummy
parameter name which must start with a capital letter because it is an Information Object Set.
We will in the next chapter that dummy parameters can be many other things as well, and that
things other than types can be parameterised, but this will suffice for now.

Figure II-20 shows the import into Wineco-main, and the definition of the new ROSE-based
abstract syntax with the supply of the wineco-specific "My-ops" as the actual parameter to the
Rose-PDU parameterized type.

  ROSE-module
        {joint-iso-itu-t remote-operations(4) generic-ROS-PDUs(6)}
        DEFINITIONS
        AUTOMATIC TAGS
        BEGIN
        EXPORTS OPERATION, ERROR, Rose-PDU{};

        Rose-PDU {OPERATION:User-ops} ::=
                   CHOICE
                  {invoke   Invoke {User-ops},
                   reject   Reject,
                   result   ReturnResult {User-ops},
                   error    ReturnError {User-ops} }

        Invoke {OPERATION:User-ops} ::= SEQUENCE
           { invokeId   INTEGER,
             opcode     OPERATION.&operationCode
                         ({User-ops} ! invoke-unrecognisedOperation),
             argument   OPERATION.&ArgumentType
                         ({User-ops}
                          {@opcode} ! invoke-mistypedArgument) OPTIONAL }

        Reject ::=  etc
        ReturnResult {OPERATION:User-ops} ::= etc
        ReturnError {OPERATION:User-ops} ::= etc
        END

        Figure II-19:  Defining and exporting a parameterised type
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10  What has not been said yet?

This chapter has hopefully given the reader a good
understanding of the concepts related to Information
Objects, and the principle of parameterization of ASN.1
constructs, but it has not told the full story.

In the next chapter, we will complete some more detail on the full possibilities for the sorts of
fields you can define when you specify an Information Object Class.

There is also an important facility called variable syntax which enables a more user-friendly (and
sometimes less verbose) notation to be used for defining objects of a given class (replacing the
notation of Figure II-17).

On the question of constraints, we saw in earlier chapters the simple subtype constraints, and in
this chapter table and relational constraints have been introduced.  The next chapter will explore
some further examples of constraints, and will also introduce the remaining type of constraint, the
so-called user-defined constraint.

On parameterization, there is a little more discussion to be had, including mention of so-called
parameters of the abstract syntax and the extensible empty set.

Finally, we will mention the remaining ASN.1 constructs that provide alternative means of leaving
holes in specifications.  Readers will be pleased to know that at the end of that chapter, they can be
certified as "ASN.1 Complete" as far as the notation is concerned, and if that is their only interest
in reading this book, they can stop there!

        Wineco-main
        { joint-iso-itu-t internationalRA(23) set(42)
             set-vendors(9) wineco(43) modules(2) main(5)}
        DEFINITIONS
        AUTOMATIC TAGS
        BEGIN
        IMPORTS
        Rose-PDU{} FROM Rose-module
        {joint-iso-itu-t remote-operations(4) generic-ROS-PDUs(6)}
        My-Ops FROM Wineco-operations
        { joint-iso-itu-t internationalRA(23) set(42)

         set-vendors(9) wineco(43)  modules(2) ops(4)};

        wineco-abstract-syntax ABSTRACT-SYNTAX ::=
             { Rose-PDU{My-ops} IDENTIFIED BY
        { joint-iso-itu-t internationalRA(23) set(42)
                 set-vendors(9) wineco(43) abstract-syntax(2)}
                                HAS PROPERTY
                                {handles-invalid-encodings}
                                -- See the Rose specification -- }
        END

    Figure II-20:  Using the ROSE-PDU to define the Wineco abstract syntax

Why is there always more to say?Why is there always more to say?
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Chapter 7
More on classes, constraints, and

parameterization

(Or: More than you ever wanted to know!)

Summary:

This chapter:

• describes all the different sorts of Information Object Class Field that are available for use
in a class definition;

• describes the "variable syntax" for defining Information Objects (this is arguably the most
important area covered in this chapter - read that material if you read nothing else);

• completes the discussion of constraints and of parameterization;

• describes the TYPE-IDENTIFIER built-in class;

• completes the discussion of ASN.1 notational support for "holes".

1  Information Object Class Fields

There are many different sorts of information that
generic protocol specifiers have found they wanted to
collect from their users to complete their protocol, and
ASN.1 allows the specification of a variety of different
sorts of Information Object Class Field.  Here we
briefly look at each in turn.  Figure II-21 gives an
artificial example of an Information Object Class in
which all the different sorts of field appear.

There are examples of all these different sorts of fields in current protocol specifications, but some
are much more common than others.

There are many sorts of fieldsThere are many sorts of fields
for Information Objectfor Information Object
Classes.  Some are frequentlyClasses.  Some are frequently
used, some are rarelyused, some are rarely
encountered.  This clause listsencountered.  This clause lists
them all!them all!
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References to these fields such as

                ILLUSTRATION.&fixed-type-value-field

are possible in ASN.1 notation (constrained by an actual object set or unconstrained).  Use of this
notation is called information from object class.

It is also in general possible to have references to fields of defined Information Objects and defined
Information Object Sets using notation such as

                illustration-object.&Type-field
                Illustration-object-set.&fixed-type-value-field

Use of this notation is called information from object and information from object set.

In some cases, such notation is forbidden (see the Standard for a simple table of what is legal and
what is not, and following text for a general description).  A good guide, however, is if it makes
some sort of sense, then it is legal.  We discuss below the meaning and usefulness of these
notations for each sort of field, and the circumstances in which you might want to use them.

1.1  Type fields

The type field we have already encountered.  The
field-name has to start with a capital letter, and
may be followed immediately by a comma, or we
can write, for example:

                &Type-field-optional OPTIONAL,
                &Type-field-defaulted DEFAULT NULL,

In the case of OPTIONAL, then that field may be left undefined when an Information Object of
that class is defined.  That field is then empty, and "empty" is distinct from any value that could
be put into the field.  The rules for applying an Information Object Set as a constraint say that a
match occurs with an empty field only if the corresponding element in the SEQUENCE is missing.
Thus it only makes sense to write OPTIONAL in the class definition if OPTIONAL also appears
on the corresponding element (the "hole") in the type definition of the protocol.  By contrast,
DEFAULT places no requirements on the protocol, it merely provides the type to be used if none is
specified in the definition of a particular information object.  In the illustration above we have
specified NULL.  It could, of course, be any ASN.1 type, built-in or user-defined, but use of
NULL with DEFAULT is the most common.

ILLUSTRATION ::= CLASS
                  {&Type-field,
                   &fixed-type-value-field   INTEGER,
                   &variable-type-value-field  &Type-field,
                   &Fixed-type-value-set-field  My-enumeration,
                   &Variable-type-value-set-field  &Type-field,
                   &object-field        OPERATION,
                   &Object-set-field    ERROR }

        Figure II-21:  An illustration of the different sorts of field

Type fields are common andType fields are common and
important.  They fill in the holes inimportant.  They fill in the holes in
protocols, and the need for themprotocols, and the need for them
drove the development of thedrove the development of the
Information Object Class concept.Information Object Class concept.
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If we use the "information from object class" notation unconstrained, we have what is called an
"open type". This really means an incomplete specification with no indication of who will provide,
and where, the completion of the specification.  Such use is not forbidden, but it should have been!
Don't do it!  Use with a simple table constraint is not much better, as the decoder has no way of
knowing which of a set of types have been encoded, and without such knowledge encodings can be
ambiguous.  There is a special constraint that can be supplied to an "open type" called a type
constraint.  This was mentioned briefly in clause 8 of the last chapter.  Here we might write

                ILLUSTRATION.&Type-field(My-type)

In terms of the semantics it carries, it is exactly equivalent to writing just "My-type", but it gets an
extra length wrapper in PER, and is generally handled by tools as a pointer to a separate piece of
memory rather than being embedded in the containing data-structure.  It is useful if there are a
number of places in the protocol that have some meta-semantics associated with them (such as
types carrying security data), so that by writing as an element of a SEQUENCE or SET

                SECURITY-DATA.&Type-field (Data-type-1)

you identify the element as the ASN.1 type "Data-type-1", but clearly flag it as a "SECURITY-
DATA" type.

Use of "information from object set" for a type field is illegal.  This would in general produce a set
of ASN.1 types (one from each of the objects in the object set), and there is nowhere in ASN.1
where you can use a set of types.

Use of "information from object" for a type field produces a single type, and an alternative to the
previous SEQUENCE or SET element using "Data-type-1" could in suitable circumstances be

                   object1.&Type-field
with
                   object1  SECURITY-DATA ::=
                          {&Type-field  Data-type-1,
                          etc }

Note that this latter construction flags Data-type-1 as a SECURITY-DATA type, but it does not
produce the encapsulation that the earlier construct produced.  Use of "object1.&Type-field"
produces exactly the same encoding as use of "Data-type-1" would produce.

1.2  Fixed type value fields

The names of these fields are required to begin with a lower-case
letter, and the name is required to be followed by an ASN.1 type
which specifies the type of the value that has to be supplied for that
field.  It is again permissible to include OPTIONAL and DEFAULT in
this specification, and also UNIQUE (as described in the last chapter).

The most common types for these fields are INTEGER or OBJECT IDENTIFIER or a choice of
the two, but BOOLEAN or an ENUMERATED type are also quite common.  The latter two are
used when the information being collected is not designed to be carried in a protocol message, but
rather completes a "hole" in the procedures.

For example, to take our ROSE example again, suppose that we allow the possibility that for some
operations "ReturnResult" carries no information.  This could be handled by putting OPTIONAL

Closely linked toClosely linked to
type fields, thesetype fields, these
are again frequentlyare again frequently
encountered.encountered.
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in the class definition of OPERATION.&ResultType, and also on the "hole" element of the
"ReturnResult" SEQUENCE.   However, we may want to go further than that.  In cases where
there is no result type, we may want to specify that, for some non-critical operations, the
"ReturnResult" is never sent (a "Reject" or "ReturnError" will indicate failure), for others it must
always be sent as a confirmation of completion of the operation, and for still others it is an option
of the remote system to send it or not.  In this case the fixed type value field might read:

                &returnResult ENUMERATED {always, never, optional}
                              DEFAULT always,

and the ROSE user would specify a value of "never" or "optional" for operations where this was
the required behaviour.

The use of the "information from object class" construct in this case produces simply the type of
the fixed type value field.  So use of

                ILLUSTRATION.&fixed-type-value-field

is (almost) exactly equivalent to writing

                INTEGER

The difference is that you cannot apply a table constraint with an object set of class
ILLUSTRATION to the type INTEGER.  You can apply it (and frequently do) to the "information
from object class" construct.

Both "information from object" producing (in this illustration) a single integer value and
"information from object set" producing a set of integer values (a subset of type integer) are
allowed in this case.  Thus with an object set "Illustration-object-set" of class ILLUSTRATION,
we could write

        Illustration-object-set.&fixed-type-value-field

instead of

      ILLUSTRATION.&fixed-type-value-field (Illustration-object)

What is the difference?  Not a lot!  In the latter case, you could use "@" with a relational
constraint (on a type field of class ILLUSTRATION) to point to this element.  In the former case
you could not.  The latter is what you will normally see.

1.3  Variable type value fields

This is probably the second least common sort of field.  Its main
use is to provide a default value for a type that is provided in a
type field.

The field name is followed by the name of some type field (&T-F say) defined in this class
definition.  The value supplied for the variable type value field in the definition of an information
object of this class is required to be a value of the type that was supplied for the &T-F field.

This field can be marked OPTIONAL or DEFAULT, but there are then rules that link the use of
OPTIONAL and DEFAULT between this field and the field &T-F.  Roughly, if it makes sense it is

Much less common.  AnMuch less common.  An
interesting example of ainteresting example of a
theoretically usefultheoretically useful
concept!concept!
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allowed, if it doesn't it is not!  Check the Standard (or use a tool to check your ASN.1) if you are
unsure what is allowed and what is not.  Roughly, both this field and &T-F must have, or not have,
the same use of OPTIONAL or DEFAULT, and in the latter case, the default value for this field
must be a value of the default type for the &T-F field.

As you would expect for a field which holds a single value, the field-name has a lower-case letter
following the "&".

The use of "Illustration-object-set.&variable-type-value-field" is forbidden (not legal ASN.1). The
use of "illustration-object.&variable-type-field" produces the value assigned to that field.

1.4  Fixed type value set fields

These are fields that hold a set of values of
a fixed type, and hence the field-name
starts with an upper-case letter after the
ampersand.

The information required here is a set of values of the type following the field-name (the governor
type), or in other words, a subset of that type.  These values can be supplied either by a type-
reference to a type which is the governor type with a simple subtype constraint applied it, or can
be supplied using the value-set notation described in the last chapter.

The most common occurrence of this field is where there are a number of possibilities, and the
definer of an Information Object is required to select those that are to be allowed for this
Information Object.

Thus, in a class definition:

                &Fixed-type-value-set-field
                  ENUMERATED  {confirm-by-post, confirm-by-fax,
                               confirm-registered, confirm-by-e-mail
                               confirm-by-phone},

might be used to let the user specify that, for some particular information object, some subset of
the enumeration possibilities can be used.  It is left to the reader's imagination to flesh out the
above definition into a real fictitious scenario!

Extraction of information from both objects and object sets using this field both produce a (sub)set
of values of the type used in the class definition, containing just those values that appear in any of
the objects concerned.

1.5  Variable type value set fields

I (the author of this text!) am not at all sure that this
sort of field does actually occur in practice.  It was
added largely because it seemed to be needed to
"complete the set" of available sorts of field!  Find a
good use for it!

Quite frequently used, mainly where weQuite frequently used, mainly where we
need to fill in holes in the procedures ofneed to fill in holes in the procedures of
a protocol, and have a list (ana protocol, and have a list (an
enumeration) of possible actions, someenumeration) of possible actions, some
of which need to be selected and othersof which need to be selected and others
forbidden.forbidden.

In this box I can say "this hasIn this box I can say "this has
never been used!".  In the bodynever been used!".  In the body
of the text I am more cautious!of the text I am more cautious!
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It begins with an upper-case letter, and the field-name is followed by the name of some type field
(&T-F) in the same class definition.  The field is completed by giving a set of values (a subset) of
the type that is put into &T-F.

Extraction of information from an object gives the value assigned to that field, but notation to
extract information from an object set is illegal for this field type.

1.6  Object fields

Perhaps surprisingly, this is less common than the
object set field described below, but it is used.

The object field carries the identification (an
information object reference name) of some object of
the class that follows the field name.

This is the object-and-class equivalent of the fixed type value field.

Its main use is to help in the structuring of information object definitions.   If every object of one
class (MAIN-CLASS say) is going to require certain additional information to be specified which
would add a number of fields to MAIN-CLASS (and if the same additional information is likely to
be specified frequently for different objects of MAIN-CLASS) then it makes sense to define a
separate class (ADDITIONAL-INFO-CLASS say).   Objects of ADDITIONAL-INFO-CLASS
carry just the additional information, and references to them are included in an object field of
MAIN-CLASS.

Information from an object and from an object set produces a single object or a set of objects
respectively.  Use of these constructions is mainly useful if we have two classes defined that are
closely related (the Directory OPERATION-X and CHAINED-OPERATION-X are examples),
with one having the fields of the other as a subset of its fields.  In this case it can avoid "finger-
trouble" in the definition (and provide a clearer specification) if objects defined for CHAINED-
OPERATION-X have the fields that correspond to OPERATION-X defined by extracting
information from the corresponding OPERATION-X object, rather than repeating the definition
over again.  (This point actually applies to the use of information from object for all the different
sorts of field.)

1.7  Object set fields

We have already seen this in use to list the errors
associated with an operation.  As expected for
something that is a set of objects, the & is followed by
an upper-case letter.

Information from object and from object set is again permitted, with the obvious results.

The main use of this is to let theThe main use of this is to let the
user easily reference definitions ofuser easily reference definitions of
a set of fields (which are givena set of fields (which are given
the same definition for severalthe same definition for several
objects) without having to repeatobjects) without having to repeat
the definitions of these fields forthe definitions of these fields for
each object.each object.

This is another well-used sortThis is another well-used sort
of field.  It is best known forof field.  It is best known for
its use as the &Errors field ofits use as the &Errors field of
the ROSE OPERATIONthe ROSE OPERATION
class.class.
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1.8  Extended field names

When you are referencing fields of a class, object, or
object set, you may end up with something that is itself a
CLASS or object or object set (for example,
OPERATION.&Errors delivers the ERROR class).
When this happens, you are able to add a further "." (dot)
followed by a field-name of the class you obtained.

Thus

        OPERATION.&Errors.&ParameterType
and
        OPERATION.&Errors.&errorCode

are valid notations, and are equivalent to:

        ERROR.&ParameterType
and
        ERROR.&errorCode

Similar constructions using an information object set of class OPERATION are more interesting.

Here

        My-ops.&Errors.&errorCode

delivers the set of values that are error codes for any of the operations in "My-ops", and

        my-look-up-operation.&Errors.&errorCode

delivers that set of values that identify the possible errors of "my-look-up-operation".

Of course, this can proceed to any length, so if we have an object set field of class OPERATION
that is itself a set of objects of class OPERATION (this does actually occur in ROSE - the field is
called "&Linked" and records so-called "linked operations"), we can write things like:

        my-op.&Linked.&Linked.&Linked.&Linked.&Errors.&errorCode

This stuff is utterly fascinating - yes?  But the reader is challenged to find a real use for it!  (To be
fair to ASN.1, these sorts of notation come out naturally if one wants consistency and generality in
the notation, and cost little to provide.  It is better that they are allowed than that what are fairly
obvious notations be disallowed.)

You will never see these usedYou will never see these used
except in the examples in theexcept in the examples in the
Standard!  Skip this text!Standard!  Skip this text!
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2  Variable syntax for Information Object definition

Historically, before the concept
of Information Object Classes
was fully-developed, an earlier
feature of ASN.1 (now
withdrawn), the so-called macro
notation, was used by ROSE
(and others) to provide users
with a notation for defining the
information needed to fill in the holes in their protocols.  The notation that ROSE (and others)
provided was quite human-friendly.  It certainly did not contain the "&" character, and often did
not contain any commas!  It frequently read like an English sentence, with conjunctions such as
"WITH" being included in the notation, or as a series of keyword-value pairs.

For example, to define a ROSE operation, you would write:

        my-op OPERATION
                ARGUMENT Type-for-my-op-arg
                RESULT Type-for-my-op-result
                ERRORS {error1, error4}
             ::= local 1

(In the following text, we call this the ad-hoc-notation.)

This was ad-hoc-notation defined by ROSE.  (Other groups would define similar but unrelated
syntax - in particular, some used comma to separate lists of things, others used vertical bar).

It is important to note here that when this syntax was provided (in advance of the Information
Object Class concept) there was little semantics associated with it. The above notation formally
(to an ASN.1 tool) was nothing more than a convoluted syntax for saying:

        my-op CHOICE {local INTEGER, global OBJECT IDENTIFIER}
                ::= local:1

and typically the value reference "my-ops" was never used anywhere.  A lot of information was
apparently being collected, but was then "thrown on the ground" (in terms of any formal model of
what the text meant).

(As an aside, the inclusion of the ":" (colon) above after "local" is not fundamental to this
discussion - it resulted from the fact that a choice value was expressed in early work as (eg) "local
1" and post-1994 as "local:1").

 The above notation was, however, designed really to serve the same purpose that you would get
today with the object definition:

        my-op OPERATION ::=
                {&operationCode  local:1,
                 &ArgumentType   Type-for-my-op-arg,
                 &ResultType     Type-for-my-op-result,
                 &Errors         {error1 | error4} }

(We call this below the object-definition-notation.)

A few techies define information object classes,A few techies define information object classes,
but a lot of users define objects of those classes,but a lot of users define objects of those classes,
and even more (non-techie) people read thoseand even more (non-techie) people read those
definitions.  We need a human-friendly notationdefinitions.  We need a human-friendly notation
to define objects of a given class.  "Variableto define objects of a given class.  "Variable
syntax" is important and much used.syntax" is important and much used.



© OS, 31 May 1999 217

We can observe a number of things. First, the ad-hoc-notation is probably easier for a human to
read than the object-definition-notation, although the lack of a clear semantic under-pinning would
confuse more intelligent readers!  Second, because the notation was ad hoc, it was very difficult to
produce any tool support for it.  Third, because the notation was ad hoc, a tool had no means of
knowing when this ad hoc notation terminated and we returned to normal ASN.1 (there were no
brackets around the ad-hoc-notation).  Finally, there was no formal link (such as we get by using
an Information Object Set as a constraint) between use of this notation and holes in the ROSE
protocol.

Nonetheless, when the Information Object Class material was introduced into ASN.1 (and the use
of macro notation withdrawn) in 1994, it was felt important to allow a more human-friendly (but
still fully machine-friendly, and with full semantics) notation for the definition of objects of a given
class.

The aim was to allow definers of a class to be able to specify the notation for defining objects of
that class which would let them get as close as possible (without sacrificing machine-
processability) to the notation that had hitherto been provided as ad-hoc notation.  The "variable
syntax" of ASN.1 supports (fulfills) this aim.

Variable syntax requires that a class definition is immediately followed by the key words "WITH
SYNTAX" followed by a definition of the syntax for defining objects of that class.  If those
keywords are not present following the class definition, then the only available syntax for defining
objects is the object-definition-notation.  (The latter can still be used by users defining objects even
if there is a "WITH SYNTAX" clause.)

Figure II-22 adds WITH SYNTAX to the OPERATION class definition.  (Again we must
emphasise that the real ROSE specification is a little more complex than this - we are not
producing a full tutorial on ROSE!)

What is this saying/doing?  It allows an object of class operation to be defined with the syntax:

                my-op OPERATION ::=
                   { ARGUMENT  Type-for-my-op-arg
                     RESULT Type-for-my-op-result
                     ERRORS {error1 | error4}
                     CODE local:1  }

   OPERATION ::= CLASS
                  {&operationCode CHOICE {local INTEGER,
                                          global OBJECT IDENTIFER}
                                          UNIQUE,
                   &ArgumentType,
                   &ResultType,
                   &Errors ERROR OPTIONAL }
                WITH SYNTAX
                  { ARGUMENT &ArgumentType
                    RESULT   &ResultType
                    [ERRORS &Errors]
                    CODE  &operationCode }

  Figure II-22:  Inclusion of WITH SYNTAX in the definition of OPERATION
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The reader will notice the disappearance of the unsightly "&", the strong similarity between this
and the ad-hoc-notation, but also the presence of curly brackets around the definition, needed to
maintain machine-processability.

What can you write following "WITH SYNTAX"?  Roughly you have the power normally used in
defining command-line syntax - a series of words, interspersed with references to fields of the
class.  In defining an object, the definer must repeat these words, in order, and give the necessary
syntax to define any field that is referenced.  Where a sequence of words and/or field references
are enclosed in square brackets (as with "[ERRORS &Errors]" above), then that part of the syntax
can be omitted.  (Of course, the inclusion of the square brackets was only legal in the definition of
the "WITH SYNTAX" clause because "&Errors" was flagged as "OPTIONAL" in the main class
definition.)

A "word" for the purpose of the WITH SYNTAX clause is defined as a sequence of upper-case
(not lower-case) letters (no digits allowed), possibly with (single) hyphens in the middle.

It is also possible to include a comma (but no other punctuation) in the WITH SYNTAX clause, in
which case the comma has to appear at the corresponding point in the definition of an object of
that class.

Square brackets can be nested to produce optional sections within optional sections.  However,
there are some quite severe restrictions on the use of "WITH SYNTAX" which are designed both
to prevent the apparent acquisition of information with no effect on the actual object definition,
and also to ensure easy machine-processability.  Writers of a WITH SYNTAX clause should read
the Standard carefully.  Figure II-23 would, for example, be illegal.

                OPERATION ::= CLASS
                  {&operationCode CHOICE {local INTEGER,
                                          global OBJECT IDENTIFER}
                                          UNIQUE,
                   &ArgumentType,
                   &ResultType,
                   &Errors ERROR OPTIONAL }
                WITH SYNTAX
                  { ARGUMENT &ArgumentType
                    RESULT   &ResultType [REQUIRED]
                    [ERRORS &Errors]
                    CODE  &operationCode }

        Figure II-23:  Illegal specification of WITH SYNTAX
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This is because it allows the definer of an object to provide information by inclusion or not of the
word "REQUIRED" which is nowhere recorded in a field of the object.  If it is desired to let the
definer of an object specify whether the return of a result is required or not, the definition of figure
II-24 could be used, allowing:

                my-op OPERATION ::=
                   { ARGUMENT  Type-for-my-op-arg
                     RESULT Type-for-my-op-result
                        does-not RETURN-RESULT
                     ERRORS {error1 | error4}
                     CODE local:1  }

Finally, we try to provide a tabular notation for the compact definition of a an object of class
OPERATION similar to the table defined originally in Figure II-14.  This is shown in figure II-25.

With the definition in figure II-24 we would be allowed to write (compare figures II-14 and II-17):

   OPERATION ::= CLASS
                  {&operationCode CHOICE {local INTEGER,
                                          global OBJECT IDENTIFER}
                                          UNIQUE,
                   &ArgumentType,
                   &ResultType,
                   &ReturnsResult  ENUMERATED
                        {does, does-not},
                   &Errors ERROR OPTIONAL }
                WITH SYNTAX
                  { ARGUMENT &ArgumentType
                    RESULT   &ResultType
                    &ReturnsResult RETURN-RESULT
                    [ERRORS &Errors]
                    CODE  &operationCode }

 Figure II-24:  Collecting information on requirements to return a result

   OPERATION ::= CLASS
                  {&operationCode CHOICE {local INTEGER,
                                          global OBJECT IDENTIFER}
                                          UNIQUE,
                   &ArgumentType,
                   &ResultType,
                   &Errors ERROR OPTIONAL }
                WITH SYNTAX
                  { &operationCode
                    &ArgumentType
                    &ResultType
                    [&Errors]
                    }

Figure II-24:  WITH SYNTAX allowing a tabular definition of objects
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My-ops OPERATION ::=
 { {asn-val-order Order-for-stock     Order-confirmed
                                                  {security-failure
                                                  | unknown-branch} }
 | {asn-val-sales Return-of-sales     NULL        {security-failure
                                                  | unknown-branch} }
 | {asn-val-query Query-availability  Availability-response
                                                  {security-failure
                                                  | unknown-branch
                                                  | unavailable   } }
 | {asn-val-state Request-order-state Order-state {security-failure
                                                  | unknown-branch
                                                  | unknown-order } } }

So we have now come full circle!  The informal tabular presentation we used in figure II-14 was
replaced with the formal but more verbose definition of figure II-17, which (using WITH
SYNTAX) can be replaced with syntax very like that of figure II-14.

It should by now be clear to the reader that WITH SYNTAX clauses should be carefully
considered.  Not only must the rules of what is legal be understood, but what is a good
compromise between verbosity and intelligibility in the final notation has to be determined.  As
with all human interface matters, there is no one right decision, but a little thought will avoid bad
decisions!

3  Constraints re-visited - the user-defined constraint

There is not a lot to add on constraints.  We have covered
earlier all the simple sub-type constraints, and in the last
chapter the table and relational constraints.  There is just
one other form of constraint to discuss, the so-called
user-defined constraint.

We discussed above the earlier availability of a notation (the macro notation) that allowed people
to define new ad-hoc-notation (with no real semantics) for inclusion in an ASN.1 module.  When
this "facility" was removed in 1994, it turned out that the Information Object concept did not quite
cover all the requirements that had been met by use of this macro notation, and the user-defined
constraint concept was introduced to meet the remaining requirements.  This form of constraint
would probably not have been introduced otherwise, as it is little more than a comment, and tools
can make little use of it.  It is almost always used in connection with a parameterised type,
introduced in clause 9 of II-6.

One piece of ad-hoc-notation that was defined using the macro notation was the ability to write:

                ENCRYPTED My-type

 as an element of a SET or SEQUENCE.

Although not implied by the ASN.1 formal text, this actually meant that the element was a
BITSTRING, whose contents were an encryption (according to an encryption algorithm specified
in English text) of the encoding of the type My-type.

We can get slightly more clarity if we define a parameterised type "ENCRYPTED" as :

User-defined constraints -User-defined constraints -
little more than a comment!little more than a comment!
Why bother?Why bother?
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                ENCRYPTED {Type-to-be-encrypted} ::= BITSTRING

and then use

                ENCRYPTED {My-type}

as the SEQUENCE or SET element.

(Note that we violate convention, but not the rules of ASN.1 by using all capitals for the
ENCRYPTED type.  This is for reasons of historical compatibility with the original ad-hoc-
notation "ENCRYPTED My-type".  Note also that the new formal notation includes a new pair of
curly brackets, as we saw - for a slightly different reason - with the move from ad-hoc-notation to
object-definition-notation.)

The above avoided the use of an ad-hoc-notation, but it is curious for the dummy parameter of
"ENCRYPTED" not to be used at all on the right-hand side of the assignment.  It is clear that the
actual value of the BITSTRING will depend on the "Type-to-be-encrypted" type (and also on the
encryption algorithm and keys, which we cannot define using ASN.1).

So we introduce the user-defined constraint.  In its basic form, we would write:

                ENCRYPTED {Type-to-be-encrypted} ::= BITSTRING
                        (CONSTRAINED BY {Type-to-be-encrypted} )

which shows that the dummy parameter is used to constrain the value of BITSTRING.  (If there
were multiple parameters used in the constraint, these would be in a comma-separated list within
the curly braces after CONSTRAINED BY.)

The constraint is called a "user-defined" constraint because the precise nature of the constraint is
not specified with formal ASN.1 notation.  This construction almost invariably contains comment
that details the precise nature of the constraint.  So the above would more commonly be written as:

                ENCRYPTED {Type-to-be-encrypted} ::= BITSTRING
                        (CONSTRAINED BY {Type-to-be-encrypted}
                         -- The BITSTRING is the results of
                         -- encrypting Type-to-be-encrypted
                         -- using the algorithm specified
                         -- in the field security-algorithm,
                         -- and with the encryption parameters
                         -- specified in Security-data -- )

The reader should know enough by now (assuming earlier text has been read and not skipped!) to
realise that "security-algorithm" will turn out to be a (UNIQUE) fixed type value field (probably
of type object identifier) of some SECURITY-INFORMATION class, with "Security-data" being a
corresponding type field of this class that, for any given object of SECURITY-INFORMATION is
defined with an ASN.1 type that can carry all necessary parameters for the algorithm that is being
defined by that object.  There might be other fields of SECURITY-INFORMATION that statically
define choices of procedures in the application of the algorithm, filling in procedural "holes" in this
process.

4  The full story on parameterization

There is not a lot more to add on parameterization, and it is all pretty obvious stuff.  But here it is.

It is obvious, powerful,It is obvious, powerful,
and simple!  How unusualand simple!  How unusual
for ASN.1!for ASN.1!
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4.1  What can be parameterized and be a parameter?

The box says it all.  Any form of reference name - a
type reference, a value reference, a class reference,
an object reference, an object set reference can be
parameterised by adding a dummy parameter list after the reference name and before the "::="
when the "thing" the name references is being defined.

Here is an example of a reference name with a complete range of parameters:

        Example-reference {INTEGER:intval,
                           My-type,
                           THIS-CLASS,
                           OPERATION:My-ops,
                           ILLUSTRATION:illustration-object} ::=

As we would expect, the initial letter of dummy parameters is upper-case for types, classes, and
object sets, and lower case for objects and values.  Note that for values, object sets, and objects,
the dummy parameter list includes the type or class of these parameters followed by a ":" (colon).
(The only one of the above examples that I have not seen in an actual specification is a dummy
parameter which is a class (THIS-CLASS above).

Normally, the dummy parameter is used somewhere on the right-hand side of the assignment, but it
can also be used within the parameter list itself (before or after its own appearance).  So we could,
for example, write:

        Example1 {My-type:default-value, My-type} ::=

This notation is extremely general and powerful, and has many applications.  We have seen the
ROSE examples where an Information Object Set is declared as a dummy parameter.  This is
probably the most common thing that is used as a dummy parameter, but next to that is a value of
type INTEGER that is used on the right-hand side as the upper-bound of INTEGER values, or as
an upper-bound on the length of strings.

There is also an important use in the Manufacturing Messaging Formats (MMF) specification.
Here the bulk of the protocol specification occurs in a "generic" module, and is common to all cells
on a production line. However, specific cells on the production line require some additional
information to be passed to them.  In the generic module we use a dummy parameter (a type) and
include it in our protocol specification as an element of our SEQUENCE and export this
parameterised type.  Modules for specific cells define a type containing the additional information
for that cell, import the generic type, and declare the protocol to be used for that type of cell as the
generic type, supplied with the type containing the additional information as the actual parameter.
This is similar to the ROSE example, but using a type rather than an information object set.

Let us explore the question of bounds a little further.  Few protocols "hard-wire" upper bounds into
the specification, but it is always a good idea to specify such bounds, as designers rarely intend to
require implementors to handle arbitrarily large integers, iterations of sequences, or arbitrarily
long strings.  Where such bounds are fixed for the entire protocol, then it is common practice to
assign the various bounds that are needed to an integer reference name in some module, then to use
EXPORTS and IMPORTS to get those names into the modules where they are used as bounds.

Where, however, there are generic types (such as a CHOICE of a number of different character
string types) that are used in many places but with different bounds for each use, then using an
INTEGER dummy parameter for the bounds is a very effective and common practice.

Answer:  Anything and everything!Answer:  Anything and everything!
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It is actually quite rare to see long dummy parameter lists.  This is because any collection of
information (apart from a class) can easily be turned into a Information Object Set.  So with the
earlier example (taking MY-CLASS out) of:

        Example-reference {INTEGER:intval,
                           My-type,
                           OPERATION:My-ops,
                           ILLUSTRATION:illustration-object} ::=

We could instead define:

        PARAMETERS-CLASS ::= CLASS
                {&intval  INTEGER,
                 &My-type,
                 &My-ops  OPERATION,
                 &illustration-object ILLUSTRATION}

and then our parameter list just becomes:

        Example-reference {PARAMETERS-CLASS:parameters} ::=

and on the right-hand side we use (for example) "parameters.&My-type" instead of "My-type".
This may seem more cumbersome than using several dummy parameters, but if the same parameter
list is appearing in several places, particularly if dummy parameters are being passed down as
actual parameters through several levels of type definition, it can be useful to bundle up the
dummy parameters in this way.

A particular case of this would be where a protocol designer has identified twelve situations
(iterations of sequences, lengths of strings, sizes of integers) where bounds are appropriate, with
potentially twelve different integer values for each of these situations, probably with each of the
twelve values being used in several places in the protocol.  This is again a good case for
"bundling".  We can define a class:

                BOUNDS ::= CLASS
                        {&short-strings    INTEGER,
                         &long-strings     INTEGER,
                         &normal-ints      INTEGER,
                         &very-long-ints   INTEGER,
                         &number-of-orders INTEGER}
                        WITH SYNTAX
                        {STRG &short-strings, LONG-STRG &long-strings,
                         INT &normal-ints, LONG-INT &very-long-ints,
                         ORDERS &number-of-orders}

and routinely and simply make an object set of this class a dummy parameter of every type that we
define, passing it down as an actual parameter of any types in SEQUENCE, SET, or CHOICE
constructions.  We can then use whichever of the fields we need in the various places in our
protocol.  In some type definitions, we might use none of them, and the dummy parameter for that
type would be redundant (but still legal), or we might use one or two of the fields, or (probably
rarely) all of them.

At the point where we define our top-level type (usually a CHOICE type, as we discussed in the
early parts of this book), we can set our bounds and supply them as an actual parameter.  So if
"Wineco-protocol" is our top-level type, we could have:
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                bounds BOUNDS ::= {STRG  32, LONG-STRG 128,
                                   etc }
                Wineco-protocol {BOUNDS:bounds} ::= CHOICE
                        {ordering [APPLICATION 1] Order-for-stock
                                                  {BOUNDS:bounds},
                         sales [APPLICATION 2] Return-of-sales
                                                  {BOUNDS:bounds}
                         etc.  }

No doubt there are some readers that will be saying "What is the point of passing this stuff down
as parameters, when (provided "bounds" is exported and imported everywhere), it can be directly
used?"  The answer in this case is "Not much!".  If, for any given type, any set of bounds is always
going to be fixed, then there is no point in making it a parameter, a global reference name can be
used instead, with a simpler and more obvious specification.  But read on to the next section!

4.2  Parameters of the abstract syntax

Protocol designers are often hesitant about fixing
bounds in the body of a protocol definition, even
if they are defined in just one place and passed
around either by simple import/export or by
additionally using dummy parameters.  The
reason for the hesitation is that bounds can very
much "date" a protocol for two reasons:  First,
what seems adequate initially (for example, for
the number of iterations of the "details"
SEQUENCE in our "Order-for-stock" type in
Figure 13 of Section I) can well prove inadequate ten years later when the business has expanded
and mergers have occurred!  Second, bounds are usually applied to ease the implementation effort
when implementing on machines with limited memory capacity, or without support for calculations
with very long integer values.  Such technological limitations do, however, have a habit of
disappearing over time.  So whilst fifteen years ago, many designers felt that it was unreasonable
to have messages that exceeded 64K octets, today implementors on most machines would have no
problem handling messages that are a megabyte long.  (An exception here would be specifications
of data formats for smart cards, where memory is still very limited.  This is an area where ASN.1
has been used.)

So ..., if we don't want to put our bounds into the main specification, what to do?  Just leave them
out?  This will undoubtedly cause interworking problems, with some systems not being able to
handle things of the size that some other systems generate, and we are not even flagging this up as
a potential problem in our ASN.1 specification.

Providing a "bounds" parameter, but never setting values for it, can help with this problem.  We
have already seen in figure 21 in Section I Chapter 3 that we can specify our top-level type using
the "ABSTRACT- SYNTAX" notation.  Let us repeat that now with our parameterised Wineco-
protocol developed above:

        wineco-abstract-syntax {BOUNDS:bounds} ABSTRACT-SYNTAX ::=
                {Wineco-protocol {BOUNDS:bounds} IDENTIFIED BY etc}

We are now defining our abstract syntax with a parameter list.  We have parameters of the abstract
syntax.  ASN.1 permits this, provided such parameters are used only in constraints.  These
constraints are then called variable constraints, because the actual bound is implementation-

So you want to leave some thingsSo you want to leave some things
implementation-dependent?implementation-dependent?
Coward!  But at least make itCoward!  But at least make it
explicit (and define exception-explicit (and define exception-
handling to help interworkinghandling to help interworking
between different implementations).between different implementations).
Parameters of the abstract syntaxParameters of the abstract syntax
let you do that, but they are alet you do that, but they are a
rarely-used feature.rarely-used feature.
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dependent.  The important gain that we have now got, however, is that this implementation-
dependence has been made very clear and specific.  Where we have a variable constraint, we would
normally provide an exception marker to indicate the intended error handling if material is received
that exceeds the local bounds.

In the OSI work, there is the concept of International Standardized Profiles (ISPs) and of Protocol
Implementation Conformance Statements (PICS).  The purpose of ISPs is to provide a profile of
options and parameter values to tailor a protocol to the needs of specific communities, or to define
different classes (small, medium, large say) of implementation.  The purpose of the PICS is to
provide a format for implementors to specify the choices they have made in implementation-
dependent parts of the protocol.  Clearly, the use of parameters of the abstract syntax aids in both
these tasks, with values for those parameters either being specified in some profile (which an
implementation would then claim conformance to) or directly in the PICS for an implementation.

Parameters of the abstract syntax (with exception
markers on all variable parameters) provide a very
powerful tool for identifying areas of potential inter-
working problems, but it is (for this author at least)
sad that to-date these features are not yet widely
used.

4.3  Making your requirements explicit

4.3.1  The TYPE-IDENTIFIER class

A very common Information Object Class is one
which has just two fields, one holding an object
identifier to identify an object of the class, and the
other holding a type associated with that object.
This class is in fact pre-defined (built-in) in ASN.1
as the TYPE-IDENTIFIER class.  It is defined as:

        TYPE-IDENTIFIER ::= CLASS
           {&id  OBJECT IDENTIFIER UNIQUE,
            &Type }
           WITH SYNTAX {&Type IDENTIFIED BY &id}

There are many protocols that make use of this class. It is the foundation stone for a very flexible
approach to extensibility of protocols.

4.3.2  An example - X.400 headers

(As with ROSE, the following is not an exact copy of X.400).

In X.400 (an e-mail standard), there is the concept of "headers" for a message.  A wide range of
headers are defined.  In the earliest version of X.400, these were hard-wired as types within a
SEQUENCE, but it rapidly became clear that new headers would be added in subsequent versions.
Of course, the SEQUENCE could just have had the extensibility ellipsis added, with defined
exception handling on the ellipsis, ensuring interworking between versions 1 and 2, but an
alternative approach is to define the headers as:

        HEADER-CLASS ::= TYPE-IDENTIFIER

Providing extensibility is allProviding extensibility is all
very well, but make sure thatvery well, but make sure that
your requirements onyour requirements on
implementations are clearlyimplementations are clearly
specified.  Do they have tospecified.  Do they have to
implement everything but canimplement everything but can
add more?  Implement the bitsadd more?  Implement the bits
they choose but NOT add more?they choose but NOT add more?
Or a combination of both?  InOr a combination of both?  In
many cases you can expressmany cases you can express
these requirements formally.these requirements formally.

One of only two built-in classesOne of only two built-in classes
(the other is ABSTRACT-(the other is ABSTRACT-
SYNTAX) in ASN.1, andSYNTAX) in ASN.1, and
quite well-used.quite well-used.
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and the actual headers as:

Headers-type {HEADER-CLASS:Supported-headers} ::=
                          SEQUENCE OF SEQUENCE
              {id      HEADER-CLASS.&id ( {Supported-headers} !100 ),
               info    HEADER-CLASS.&Type ( {Supported-headers}{@id}!101 ) }

Exception handling 100 and 101 will be specified in the text of the protocol definition.   Handling
of 100 is likely to be "silently ignore" and of 101 (a bad type) "send an error return and otherwise
ignore".

The question is, when we eventually supply an actual parameter for Header-type, what do we
provide?  Let us examine some options.

There will certainly be some headers defined in this version of the protocol, and we will
undoubtedly expect to add more in subsequent versions, so we would first define an extensible
information object set something like:

                Defined-Headers HEADER-CLASS ::=
                        {header1 | header2 | header3 , ..., header4 }

where header4 was added in version 2.

But what do we supply as the actual parameter for our protocol?  Let us take the most general case
first.  We consider providing two parameters of the abstract syntax, both object sets of class
HEADER-CLASS.  One is called "Not-implemented" and the other "Additional-headers".  We
might want to provide one or both of these or neither, depending on the decisions below.  I think
you are probably getting the idea!

Let us now look at various possible views we might take on the requirements of implementations to
support headers.

4.3.3  Use of a simple SEQUENCE

We decide we want to define a fixed set of headers, all to be
implemented, no additions, and we will never make later
changes.  Some headers will be required, others optional.

This case is easy, and we don't need Information Object Sets, we simply use:

                Headers ::= SEQUENCE
                  {header1  Header1-type --must be included--,
                   header2  Header2-type OPTIONAL,
                         etc }

This is simple and straight-forward, but very inflexible.  Where the decisions on what headers to
provide (as in the case of e-mail headers) is rather ad hoc and likely to need to be changed in the
future, this is NOT a good way to go!

Note that in this case the identification of what header is being encoded in a group of OPTIONAL
headers is essentially done (in BER) using the tag value.  (In PER it is slightly different - a bit-
map identifies which header has been encoded in a particular position).

We got it right first time!We got it right first time!



© OS, 31 May 1999 227

4.3.4  Use of an extensible SEQUENCE

In the case of e-mail headers, it is highly likely
that we will want to add more types of header
later, so making the SEQUENCE extensible
would be a better approach.  And we should
specify exception handling so that we know how
version 1 systems will behave when they are sent headers from a version 2 system (and how
version 2 systems should behave if headers that are mandatory in version 2 are missing because it
is a version 1 system that is generating the headers).

4.3.5  Moving to an information object set definition

Now we make a quite big jump in apparent
complexity, and use the "Headers" type we introduced
above, namely:

        Headers-type {HEADER-CLASS:Headers} ::= SEQUENCE OF SEQUENCE
          {identifier   HEADER-CLASS.&id({Headers} !100),
           data         HEADER-CLASS.&Type({Headers}{@identifier} !101) }

We have now moved to use of an object identifier to identify the type of any particular header, and
potentially we now allow any given header type to be supplied multiple times with different values.
But we have lost the ability to say whether a header is optional or not, and we have no easy way of
saying which headers can appear multiple times.

We can address these problems by adding fields to our HEADER-CLASS.  So instead of defining
it as TYPE-IDENTIFIER, we can define it as:

        HEADER-CLASS ::= CLASS
           {&id  OBJECT IDENTIFIER UNIQUE,
            &Type,
            &Required   BOOLEAN DEFAULT TRUE,
            &Multiples  BOOLEAN DEFAULT TRUE}
           WITH SYNTAX {&Type IDENTIFIED BY &id,
                        [REQUIRED IS &Required],
                        [MULTIPLES ALLOWED IS &Multiples]}

We can now specify (when each header object is defined) whether it is optional or not, and whether
multiple occurrences of it are permitted or not.  Of course,  when we used a SEQUENCE, we
could flag optionality, and we could have indicated that multiples were allowed by putting
SEQUENCE OF around certain elements.  But the approach using information objects is probably
simpler if we want all of that, and paves the way for more options.

Of course, when we define the information object set "Defined-Headers", we will make it
extensible, indicating the possibility of additions in version 2, and will put an exception
specification on the ellipsis to tell version 1 systems what to do if they get headers they don't
understand.

We could actually go further than this, as X.500 does in a similar circumstance:  we could put
another field into HEADER-CLASS defining the "criticality" of a header, and we could provide a
field in "Headers-type" to carry that value.  Our exception specification could then define different
exception handling for unknown headers, depending on the value of the "criticality" field
associated with it in the message.

We are in control.  You do what weWe are in control.  You do what we
say.  We won't remove anything, butsay.  We won't remove anything, but
we might add more later.we might add more later.

Giving ourselves more options,Giving ourselves more options,
but still keeping control.but still keeping control.
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We have advanced some way from the rather restricted functionality we had with SEQUENCE.

4.3.6  The object set "Headers"

An extensible "Defined-Headers" merely gives us control
over what version 1 does when we add new material in
version 2.  It in no way says that implementations
(probably on some user-group or vendor-specific basis) can
agree and add new headers.  It also says that to conform to
version x, you must support all the headers listed in the
"Defined- Headers" for version x.

But, suppose we define:

        Supported-Headers
                {HEADER-CLASS:Additional-Headers,
                 HEADER-CLASS:Excluded-Headers} HEADER-CLASS::=
                { (Defined-Headers | Additional-Headers)
                        EXCEPT Excluded-Headers) }

where "Additional-Headers" and "Excluded-Headers" are parameters of the abstract syntax as
described above, and where "Supported-Headers" is supplied as the actual parameter for our
dummy parameter "Headers" in an instantiation of "Header-type".when we define our top-level
PDU (and then passed down for eventual use in the constraints on "Header-type").

As usual, we could, if we wish, bundle the two object sets together as an object set of a new object
class, making just one parameter of the abstract syntax covering both specifications.

With the above definition, we are clearly saying that we have some defined headers, implementors
may support others, and indeed may choose not to support some of the defined headers.  Total
freedom!  Possibly total anarchy!  But most implementations will probably choose to implement
most of the defined headers, and the exception handling should cope with interworking problems
with those that miss a few out (for whatever reason).

It is left as a (simple!) exercise for the reader to write an appropriate definition of Supported-
Headers where we

a)  decide to allow additional headers, but require support for all defined headers;  or

b)  decide to allow some defined headers not to be supported, but disallow
implementation-dependent or vendor-specific additions.

Of course, at the end of the day, you can never ENFORCE a requirement to implement everything,
nor can you prevent people from extending a standardised protocol.  But you CAN make it very
clear that they are then not conforming to the Standard.  ASN.1 provides the tools for doing this.

Now we give flexibility to theNow we give flexibility to the
implementors.  We use theimplementors.  We use the
parameters of the abstractparameters of the abstract
syntax.syntax.
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4.4  The (empty) extensible information
object set

It makes little sense in most protocols to have an
information object set with no members, even if it is
extensible:

        {...}

It has become a fairly common practice (now supported
by text in the Standard) to use this notation as a short-hand for "a parameter of the abstract
syntax".  When this is used as a constraint, it quite simply says that the specification is
incomplete, and that you must look elsewhere for the specification of what is or is not supported.

This is called a "dynamically extensible object set", the idea being that implementations will
determine in an instance of communication what objects they deem it to contain, and may indeed
(depending on whether it is raining or not!) accept or reject some objects at different times.

If you get the impression that this author disapproves of the use of this construct, you will not be
very wrong!

It provides no functionality beyond that provided (far more clearly) by parameters of the abstract
syntax.  It does, however, have one advantage.  Parameters of the abstract syntax appear at the
top-level, and need to be passed down as parameters to succeeding nested types until they reach the
point at which they are to be used. This adds to the size of a specification, and can sometimes
make it less easily readable.  (Work was once proposed to add the concept of "global parameters"
to ASN.1.  This would effectively have enabled a top-level parameter to become a normal
reference name, usable anywhere, without being passed from type to type as a sequence of actual-
dummy parameters.  This work was, however, never progressed).

The use of the "{...}" notation in a constraint provides a direct statement at the bottom level that
this constraint is implementation-dependent.  But on the opposite side again - you cannot tell by
looking at the top-level definition that there are (effectively) parameters of the abstract syntax, that
is, that the specification is incomplete.  You have to look through perhaps a hundred pages of
ASN.1 definitions trying to spot occurrences of "{...}.

The advice of this author is DON'T USE THIS CONSTRUCT.  But you do need to know what it
is supposed to mean if you encounter it, and there are many specifications that use it (more than
use parameters of the abstract syntax).

There is an informative annex (not part of the Standard) in X.681 that says that ANY object set
that is made extensible implies that random additions and removals of objects can be made when
considering constraints imposed by that object set.  It is not often that this author criticises the
ASN.1 Standards - I wrote a lot of the text in them!  But this annex gives bad advice, and is not
really supported by normative text in the body of the Standard.

So ... how do you decide what a particular specification means when it uses an extensible non-
empty set?  Read the specification carefully, and it will usually be clear.  If it uses {...} it is
probably saying that all extensible object sets can have implementation-dependent additions or
exceptions (but then has no way of countering that in specific cases except by comment).  If (like
X.400), it has explicit parameters of the abstract syntax, it surely will NOT be implying that, and
you should use the interpretation given in the previous clause for "Headers".

You must go back to FigureYou must go back to Figure
999 (Government Health999 (Government Health
Warning) when reading this.Warning) when reading this.
This is probably the mostThis is probably the most
controversial text in the wholecontroversial text in the whole
of this book!of this book!
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5  Other provision for "holes"

There are some other mechanisms, mainly
pre-dating the information object concept,
that support holes in ASN.1 specifications.
We need to have a brief discussion of these.

5.1  ANY

This has two important claims to fame.  First,
it was the only support for black-holes in the
original 1984 ASN.1 Specifications!  And
second, it was withdrawn in 1994, causing a
fairly major uproar among some ASN.1 users.

If you wrote type "ANY" in a SEQUENCE or SET, it literally meant that any ASN.1 type could
be slotted in there to replace the ANY. It was frequently accompanied in early CCITT
specifications with the comment:

        -- For further study --

This comment clearly indicated that it was merely a place-holder in an incomplete specification.
Usually in such cases, the SEQUENCE element read:

                ANY OPTIONAL

so you basically knew that that element was not implementable - YET!

Used in this way, it did no harm, but was probably not really useful.  It provided part of the
functionality we get today by using the extensibility ellipsis.  It said "there is more to come in a
later version, but we don't really know what yet".

There were, however, other uses.  One was in X.500 until recent times, where an element of a
SEQUENCE read:

                bi-lateral-information ANY OPTIONAL

The intent here was to allow implementation-dependent additional information to be passed, where
the ASN.1 type for this information would be determined elsewhere (community of interest, or
vendor-specific).  If several vendors or communities produced different specifications for the type
to fill this field, then you would typically look at the calling address to determine what the field
was saying.  (Yet another - non-standard - way of providing an identifier for the content of a hole!)

In practice, this field was never implemented by X.500 implementors.

Another option for determining the type (and its semantics) that filled the field would be to see if it
was raining or not, but I don't think anyone ever used this particular mechanism for "hole-
identification"!

You and me both - we must be gettingYou and me both - we must be getting
tired!  There is not much more to say,tired!  There is not much more to say,
but there is still some.  We'll try tobut there is still some.  We'll try to
keep it brief. This is not difficultkeep it brief. This is not difficult
stuff, but it IS used, and ISstuff, but it IS used, and IS
important.important.

A (bad?) first attempt?  'Twas theA (bad?) first attempt?  'Twas the
best we could do in 1984.  Holesbest we could do in 1984.  Holes
were not really understood then.were not really understood then.
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5.2  ANY DEFINED BY

This was an attempt in 1986/88 to shore up the
ANY.  There was by now a recognition that a
black-hole absolutely had to have somewhere
close to it in the protocol some value that would
point to the definition of the actual type (and -
more importantly - the semantics associated with
that type) that was filling the hole.  Suddenly the
hole became a bit less black!

(The light in the coal-cellar really got switched on when information objects appeared in the 1994
specification.  I am grateful to Bancroft Scott for the analogy between the introduction of the
information object concepts and switching on a light in a coal-cellar.  When he first made the
remark, someone - forgotten who - replied "That sounds rather dramatic.  Things that dramatic can
cause tidal waves."  The reply was a good one!  Information objects did not replace ANY and
ANY DEFINED BY easily.  Eventually they did, but it took close to seven years before the waves
subsided!)

With ANY DEFINED BY a typical SEQUENCE might now contain:

                identifier  OBJECT IDENTIFIER,
                hole        ANY DEFINED BY identifier

The reader will recognise that this provides the same sort of link between the two fields that is now
provided by use of a relational constraint (the @ notation) between "information from object class"
constructs, but that it lacks any information object set reference to define the precise linkage, the
types that can fill the "ANY" field, and the semantics associated with those types..

There were also (too severe) restrictions on the linkages that could be specified using the ANY
DEFINED BY notation which made it impossible for some existing specifications to move from
ANY to ANY DEFINED BY, even 'tho' they DID have a field (somewhere) in their protocol that
defined the content of the ANY hole.

5.3  EXTERNAL

EXTERNAL was introduced in 1986/88,
and is still with us.  The name is in
recognition of the fact that people want to
embed material that is external to ASN.1,
that is, material that is not defined using
ASN.1 (for example, a GIF image).  It was,
however, also intended as a better version
of ANY and ANY DEFINED BY, because
it encapsulated identification of what was
in the hole with the hole itself.

EXTERNAL was defined when ASN.1 was very much part of the OSI family, and recognised
(amongst other possibilities) identification of the hole contents using a "presentation context"

Dawn breaks (but just a bit!).  ItDawn breaks (but just a bit!).  It
was recognised that any hole reallywas recognised that any hole really
MUST have associated with it aMUST have associated with it a
mechanism for determining whatmechanism for determining what
(and with what semantics) fills the(and with what semantics) fills the
hole.hole.

But you want to include material that isBut you want to include material that is
not defined using ASN.1.  And younot defined using ASN.1.  And you
want to identify the type of material andwant to identify the type of material and
the encoding of it.  Roll your own usingthe encoding of it.  Roll your own using
OCTET STRING or BIT STRINGOCTET STRING or BIT STRING
and a separate identifier field.  Thatand a separate identifier field.  That
would work.  But EXTERNAL tried towould work.  But EXTERNAL tried to
provide a ready-made solution.provide a ready-made solution.
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negotiated using the Presentation Layer facilities of OSI.  This mechanism was probably never
used by any actual implementation.

EXTERNAL can also make a claim to fame:  its definition is almost certainly the only place in any
ASN.1 specification where the type "ObjectDescriptor" is used!  (But it is OPTIONAL - and I will
wager that no implementation has ever transmitted an "ObjectDescriptor" value within an
EXTERNAL.)

Finally, EXTERNAL was borne in the early days of understanding about abstract and transfer
syntaxes, and (if you exclude the option of using the OSI Presentation Layer) used only a single
object identifier value to identify the combination of abstract and transfer syntax for the material
that filled the hole.  Today, we generally believe that it is appropriate to identify the set of abstract
values in the hole (for example, that it is a still picture) with one object identifier, and the encoding
of those values (the encoding of the picture) with a separate object identifier.  So whilst
EXTERNAL remains (unchanged from its original introduction in 1986/88) in the 1988
specification, it has serious flaws, and new specifications should instead use "EMBEDDED PDV"
(described below) if they wish to carry non-ASN.1-defined material.

5.4  EMBEDDED PDV

EMBEDDED PDV was introduced in 1994.  It
was, quite simply, an attempt to "improve"
EXTERNAL.  It has all the functionality of
EXTERNAL that anyone cares about.  It got rid
of the Object Descriptor that no-one ever used,
and it allowed (but did not require) separate
object identifiers for the identification of the
abstract syntax and the transfer syntax
(encoding) of the material that filled the hole.

Perhaps more importantly, it included the ability for a protocol designer to specify (statically)
either or both of the abstract and transfer syntaxes for the "hole" (using constraint notation).

One important use for this is in security work, where EMBEDDED PDV is used to carry the
encryption of a type, the type (abstract syntax of hole contents) being statically specified, and the
encryption mechanism (transfer syntax) being transferred at communication time.

In appropriate circumstances, a designer can specify statically both the abstract (type of material)
and transfer syntax (encoding) of what fills the hole.  If this is done, then EMBEDDED PDV
produces no overheads other than a length wrapper around the embedded material.

A brief word about the name.  (Figure 999 again).  It is certainly a bad name for the type.
"EMBEDDED" is fine.  It represents a hole that can take embedded material.  But "PDV"?   Most
readers will never have met the term "PDV".  It actually standard for "Presentation Data Value",
and is the term used by the OSI Presentation Layer Standard to describe the unit of information
passed between the Application Layer and the Presentation Layer, or (in terms more related to the
description given here of ASN.1) an abstract value from some abstract syntax (not necessarily
defined using ASN.1).

So don't worry about the name!  For embedded material which is defined as an ASN.1 type you
probably want to use the information object-related concepts to handle your holes.  But if the
material you want to embed is not defined using ASN.1, use EMBEDDED PDV.

Why is it so difficult to get it rightWhy is it so difficult to get it right
first time?  EMBEDDED PDV isfirst time?  EMBEDDED PDV is
really just mending the deficiencies ofreally just mending the deficiencies of
EXTERNAL.  EXTERNALEXTERNAL.  EXTERNAL
looked pretty good in 1986/88, butlooked pretty good in 1986/88, but
by 1994, it needed a re-fit.by 1994, it needed a re-fit.
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5.5  CHARACTER STRING

CHARACTER STRING is actually just a special
case of EMBEDDED PDV, and there is a lot of
shared text in the specification of these types in the
ASN.1 Standard.

CHARACTER STRING was an (unsuccessful!)
attempt to produce a character string type that
would satisfy all possible needs FOREVER.  It was
intended to make it possible for the maintainers of
the ASN.1 Standard to say (as new character sets
and encodings emerged in the world), "We don't
need to change ASN.1, use CHARACTER
STRING".

The CHARACTER STRING type extends the concept of abstract and transfer syntax.  It
introduces the term "character abstract syntax" (an abstract syntax all of whose values are strings
of characters from some defined character set), and "character transfer syntax" (a transfer syntax
that provides encodings for all possible strings in a given character abstract syntax).

Put in slightly less technical terms, a character abstract syntax object identifier identifies a
character repertoire, and a character transfer syntax OBJECT IDENTIFIER identifies an encoding
for strings of those characters.

Unconstrained, an encoding of the CHARACTER STRING type includes the two object identifiers
that identify its character abstract syntax (repertoire) and its character transfer syntax (encoding)
with each string that is transmitted.   This is an unfortunate(!) overhead, as constructs like

        SEQUENCE OF CHARACTER STRING

(where the repertoire and encoding are the same for each element of the SEQUENCE OF) are quite
common.  As with EMBEDDED PDV, however, it is possible to statically constrain the
CHARACTER STRING type so that only the actual encodings of characters are transmitted.

Object identifier values have been assigned for many character repertoires and sub-repertoires, and
for many encoding schemes, but unfortunately not for all.  UTF8String was added to ASN.1 after
CHARACTER STRING.  It could have been defined as a constrained CHARACTER STRING,
but in fact it was "hard-wired" into ASN.1 as a new type defined using English text, just like
PrintableString and IA5String etc!  That is why  "unsuccessful!" appeared in the second paragraph
of this clause.

5.6  OCTET STRING and BIT STRING

Of course, the ultimate blackest of black holes is to use OCTET STRING or BIT STRING to
carry embedded material.  It happens.  You are really "rolling your own".  ASN.1 will provide the
delimitation (the length wrapper), but you must sort out the problems of identifying to a receiver
the semantics of what fills the octet string or bit string hole.

Those who believe in using a very cut-down ASN.1 use these types for their holes.  I guess you
can't complain.  They make it work.  But there are more powerful specification tools available in

Another (rather special) form ofAnother (rather special) form of
hole.  Designed to hold characterhole.  Designed to hold character
strings from any repertoire usingstrings from any repertoire using
any encoding, with announcementany encoding, with announcement
of the repertoire and encodingof the repertoire and encoding
contained in the hole.  A greatcontained in the hole.  A great
idea, but it never really took off.idea, but it never really took off.
But still ... you might want toBut still ... you might want to
use it?use it?
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the ASN.1 armoury, and I hope that anyone that has read this far in this text will not be tempted
into use of OCTET STRING or BIT STRING when they need to introduce a hole!

6  Remarks to conclude Section II

I wonder if there is a single reader (even my reviewers!)
that can say they read from the start through to here?
E-mail me at j.larmouth@iti.salford.ac.uk if you did.
(But don't bother if you just jumped around and got here
from the index!)

This text has tried to cover the whole of the ASN.1 concepts, mechanisms, notation.  It is believed
to be complete ("ASN.1 Complete" is the title!).  There are further sections concerned with
encoding rules and history and applications, but the description of the notation itself is now
complete.

Well ... it is complete as of 1999!  If you are reading this book in 2010, there might be a later
version available which you should get, 'cos there is probably a lot missing in this text!  But I can't
give you a reference to a later version - try a Web search, and in particular try the URL given in
Appendix 5 (which might or might not still work in 2010!).

At the time of writing, there are quite a lot of suggestions bubbling up in the ASN.1
standardization group that could give rise to additions to the ASN.1 notation.  Recent (post-1994)
history, however, has been of only introducing changes that clarify existing text or add very minor
(from a technical view-point) and simple new functionality (such as UTF8String), not of earth-
shaking additions.  Indeed, possibly earth-shaking additions that have been proposed in the last
decade have a history of being abandoned - examples include light-weight encoding rules, global
parameters, and dynamic constraints.

Good luck in reading, writing, or implementing ASN.1 specifications!

THE END.

Well ... of this section!

And now its goodnight,And now its goodnight,
farewell, good-to-know-you!farewell, good-to-know-you!
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SECTION III

Encodings
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Chapter 1
Introduction to encoding rules

(Or: What no-one needs to know!)

Summary:  This first chapter of Section 3:

• Discusses the concept of encoding rules.

• Describes the TLV principle underlying the Basic Encoding Rules (BER).

• Discusses the question of "extensibility", or "future proofing".

• Describes the principles underlying the more recent Packed Encoding Rules (PER).

• Discusses the need for "canonical" encoding rules.

• Briefly mentions the existence of other encoding rules.

There has already been some discussion of encoding rules in earlier chapters which can provide a
useful introduction to this concept, but this section has been designed to be complete and to be
readable without reference to other sections.

The next two chapters of Section III describe in detail the Basic Encoding Rules and the Packed
Encoding Rules, but assume an understanding of the principles and concepts given here.

1  What are encoding rules, and why the chapter sub-title?

"What no-one needs to know!".   At the end-of-the-day,
computer communication is all about "bits-on-the-line" - what
has in the past been called "concrete transfer syntax", but
today is just called "transfer syntax".  (But if you think about
it, a "bit" or "binary digit" is itself a pretty abstract concept -
what is "concrete" is the electrical or optical signals used to
represent the bits.)

ASN.1 has taken on-board some concepts which originated
with the so-called "Presentation Layer" of the ISO/ITU-T specifications for Open Systems
Interconnection (OSI).  (Note that the term "Presentation Layer" is a bad and misleading one -
"Representation Layer" might be better).

You don't know or careYou don't know or care
about the electrical orabout the electrical or
optical signals used tooptical signals used to
represent bits, so whyrepresent bits, so why
care about the bitcare about the bit
patterns used to representpatterns used to represent
your abstract values?your abstract values?
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The concepts are of a set of "abstract values" that are sent over a communications line, and which
have associated with them bit patterns that represent these abstract values in an instance of
communication.

The set of abstract values to be used, and their associated semantics, is at the heart of any
application specification.  The "encoding rules" are concerns of the (Re)Presentation Layer, and
define the bit patterns used to represent the abstract values.  The rules are a complete specification
in their own right (actually, there are a number of variants of two main sets of rules - these are
described later).  The encoding rules say how to represent with a bit-pattern the abstract values in
each basic ASN.1 type, and those in any possible constructed type that can be defined using the
ASN.1 notation.

ASN.1 provides its users with notation for defining the "abstract values" which carry user
semantics and which are to be conveyed over a communications line.  (This was fully described in
Sections I and II).  Just as a user does not care (and frequently does not know) what electrical or
optical signal is used to represent zero and one bits, so in ASN.1, the user should not care (or
bother to learn about) what bit patterns are used to represent his abstract values.

So details of the ASN.1 "encoding rules", which define the precise bit-patterns to be used to
represent ASN.1 values, while frightfully important, are "What no-one needs to know".

It is the case today that there are good ASN.1 tools (called "ASN.1 compilers") available that will
map an ASN.1 type definition into a type definition in (for example), the C, C++, or Java
programming languages (see Section I Chapter 6), and will provide run-time support to encode
values of these data structures in accordance with the ASN.1 Encoding Rules.  Similarly, an
incoming bit-stream is decoded by these tools into values of the programming language data-
structure.  This means that application programmers using such tools need have no knowledge of,
or even interest in, the encoded bit-patterns.  All that they need to worry about is providing the
right application semantics for values of the programming language data structures.  The reader
will find some further discussion of these issues in the Introduction to this book, and in Chapter 1
of Section 1.  A detailed discussion of ASN.1 compilers is provided in Chapter 6 of Section 1.

There are, however, a few groups of people that will want to know all about the ASN.1 Encoding
Rules.  These are:

• The intellectually curious!

• Students being examined on them!

• Standards writers who wish to be reassured about the quality of the ASN.1 Encoding
Rules.

• Implementors who, for whatever reason, are unable to use an ASN.1 compiler (perhaps
they are working with an obscure programming language or hardware platform, or perhaps
they have no funding to purchase tools), and have to "hand-code" values for transmission
and "hand-decode" incoming bit-patterns.

• Testers and trouble-shooters that need to determine whether the actual bit-patterns being
transmitted by some implementation are in accordance with the ASN.1 Encoding Rules
specification.

If you fall into any of these categories, read on!  Otherwise this section of the book is not for you!
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2  What are the advantages of the encoding rules approach?

Section 1 Chapter 1 discussed a number of approaches to specifying protocols.  The ASN.1
approach (borrowed from the Presentation Layer of OSI) of completely separating off and "hiding"
the details of the bit-patterns used to represent values has a number of advantages which are
discussed in the next few paragraphs.

The first point to note is that a clear separation of the
concept of transmitting abstract values from the bit-
patterns representing those values enables a variety of
different encodings to be used to suit the needs of
particular environments.  One often-quoted example (but
I am not sure you will find it in the real-world!) is of a
communication over a high-bandwidth leased line with
hardware encryption devices at each end.  The main
concern here is to have representations of values that
impose the least CPU-cycle cost at the two ends.  But a
bull-dozer goes through the leased line!  And the back-up provision is a modem on a telephone line
with no security device.  The concern is now with maximum compression, and some selective field
encryption.   The same abstract values have to be communicated, but what is the "best"
representation of these values has now changed.

The second example is similar.  There are some protocols where a large bulk of information has to
be transferred from the disk of one computer system to the disk of another computer system.  If
those systems are different, then some work will be needed by one or both systems to map the local
representations of the information into an agreed (standard) representation for transfer of the
values over a communication line.  But if, in some instance of communication, the two systems are
the same type of system, CPU-cycles can probably be saved by using a representation that is close
to that used for their common local representation of the information.

Both the above examples are used to justify the OSI concept of negotiating in an instance of
communication the representation (encoding) to be used, from a set of possible representations.
However, today, ASN.1 is more commonly used in non-OSI applications, where the encoding is
fixed in advance, and is not negotiable at communications-time (there is no OSI Presentation Layer
present).

There are, however, a few other advantages of this clear separation of encodings from abstract
values that are important in the real-world of today for the users of ASN.1.

We have seen over the last twenty years considerable progress in human knowledge about how to
produce "good" encodings for abstract values.  This is reflected in the difference between the
ASN.1 Basic Encoding Rules developed in the early 1980s and the Packed Encoding Rules
developed in the early 1990s.  But application specifications defined using ASN.1 in the 1980s
require little or no change to the specification to take advantage of the new encoding rules - the
application specification is unaffected, and will continue to be unaffected if even better encoding
rules are devised in the next century.

There is a similar but perhaps more far-reaching issue concerned with tools.  The separation of
encoding issues from the application specification of abstract values and semantics is fundamental
to the ability to provide ASN.1 compilers, relieving application implementors from the task of
writing (and more importantly, debugging) code to map between the values of their programming
language data-structures and "bits-on-the-line".   Moreover, where such tools are in use, changing
to a new set of encoding rules, such as PER, requires nothing more than the installation of a new

The encoding rules approachThe encoding rules approach
enables a degree ofenables a degree of
information hiding (andinformation hiding (and
flexibility in making futureflexibility in making future
changes to encodings) that ischanges to encodings) that is
hard to match with otherhard to match with other
approaches to specifyingapproaches to specifying
encodings.encodings.
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version of the ASN.1 compiler, and perhaps the changing of a flag in a run-time call to invoke the
code for the new encoding rules rather than the old.

3  Defining encodings - the TLV approach

Chapter 1 of Section 1 discussed briefly the approach
of using character strings to represent values, giving
rise to a variety of mechanisms to precisely specify the
strings to be used, and to "parsing" tools to recognise
the patterns in incoming strings of characters.  These
approaches tend to produce quite verbose protocols, and
generally do not give rise to as complete tool support as
is possible with ASN.1.  They are not discussed further,
and we here concentrate on approaches which more
directly specify the bit-patterns to be employed in
communication.

As the complexity of application specifications developed over the years, one important and early
technique to introduce some "order" to the task of defining representations was the so-called "TLV"
approach.

With this approach, information to be sent in a message was regarded as a set of "parameter
values".  Each parameter value was encoded with a parameter identification (usually of fixed
length, commonly a single octet, but perhaps overflowing to further octets), followed by some
encoding that gave the length (octet count) of the parameter value (again as a single octet with
occasionally the need for two or more octets of length encoding), and then an encoding for the
value itself as a sequence of octets.

The parameter id was often said to identify the type of the parameter, so we have a Type field, a
Length field, and a Value field, or a TLV encoding.

In these approaches, all fields were an integral number of octets, with all length counts counting
octets, although some of the earliest approaches (not followed by ASN.1) had sixteen bit words as
the fundamental unit, not octets.

Once the way of encoding types and lengths is determined, the rest of the specification merely
needs to determine what parameters are to appear on each message, what their exact id is, and how
the values are to be encoded.

This structure has a number of important advantages:

• It makes it possible to give freedom to a sender to transmit the parameters in any order,
perhaps making for simpler (sender) implementation.  (Note that this is today seen as
actually a bad thing to allow, not a good one!)

• It makes it possible to declare that some parameters are optional - to be included only
when needed in a message.

• It handles items of variable length.

Type, Length, Value forType, Length, Value for
encoding basic items, nest aencoding basic items, nest a
series of TLVs as a V withinseries of TLVs as a V within
an outer Type and Length,an outer Type and Length,
repeat to any depth, and yourepeat to any depth, and you
have a powerful recipe forhave a powerful recipe for
transferring structuredtransferring structured
information in a very robustinformation in a very robust
(but perhaps verbose) fashion.(but perhaps verbose) fashion.
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• It enables a basic "parsing" into a set of parameter values without needing any knowledge
about the actual parameters themselves.

• And importantly - it enables a version 1 system to identify, to find the end of, and to ignore
(if that is the desired behaviour), or perhaps to relay onwards, parameters that were added
in a version 2 of the protocol.

The reader should recognise the relationship of these features to ASN.1 - the existence of "SET"
(elements transmitted in any order), the "OPTIONAL" notation which can be applied to elements
of a SET or SEQUENCE, and the variable length nature of many ASN.1 basic types.  The version
1/version 2 issue is what is usually called "extensibility" in ASN.1.

The major extension beyond this "parameter" concept developed in the late 1970s with the idea of
"parameter groups", used to keep close together related parameters.  Here we encode a "group
identifier", a group length encoding, then a series of TLV encodings for the parameters within the
group.  As before, the groups can appear in any order, and a complete group may be optional or
mandatory, with parameters within that group in any order and either optional or mandatory for
that group. Thus we have effectively two levels of TLV - the group level and the parameter level.

It is a natural extension to allow arbitrarily many levels of TLV, with the V part of all except the
innermost TLVs being a series of embedded TLVs.  This clearly maps well to the ASN.1 concept
of being able to define a new type as a SEQUENCE or SET of basic types, then to use that new
type as if it were a basic type in further SEQUENCEs or SETs, and so on to any depth.

Thus this nested TLV approach emerged as the natural one to take for the ASN.1 Basic Encoding
Rules, and reigned supreme for over a decade.

To completely understand the Basic Encoding Rules we need:

• To understand the encoding of the "T" part, and how the identifier in the "T" part is
allocated.

• To understand the encoding of the "L" part, for both short "V" parts and for long "V"
parts.

• For each basic type such as INTEGER, BOOLEAN, BIT STRING, how the "V" is
encoded to represent the abstract values of that type.

• For each construction mechanism such as SEQUENCE or SET, how the encodings of types
defined with that mechanism map to nested TLV structures.

This is the agenda for the next chapter.

4  Extensibility or "future proofing"

The TLV approach is very powerful at enabling the specification of a version 1 system to require
specified action on TLV elements where the "T" part is not recognised.  This allows new elements
(with a distinct "T" part) to be added in version 2 of a specification, with a known pattern of
behaviour from version 1 systems that receive such material.
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This interworking between version 1 and version 2 systems without the need for version 2
implementations to implement both the version 1 and the version 2 protocol is a powerful and
important feature of ASN.1.

It is a natural outcome of the TLV approach to encoding in the Basic Encoding Rules, but if one
seeks encodings where there is a minimal transfer of information down the line, it is important to
investigate how to get some degree of "future-proofing" to allow interworking of version 1 and
version 2 systems without the verbosity of the TLV approach.

Early discussions in this area seemed to indicate that future-proofing was only possible if a TLV
style of encoding was used, but later work showed that provided the places in the protocol where
version 2 additions might be needed were identified by a new notational construct (the ASN.1
"extensibility" ellipsis - three dots), then future-proofing becomes possible with very little overhead
even in an encoding structure that is not in any way a TLV type of structure.

It was this recognition that enabled the so-called Packed Encoding Rules (PER) to be developed.

5  First attempts at PER - start with BER and remove redundant
octets

This was a blind-alley!

NOTE — Those with no knowledge of BER may wish to at lest skim the next chapter before returning to
the following text, as some examples show BER encodings.

The first approach to producing more compact (packed) encodings
for ASN.1 was based on a BER TLV-style encoding, but with
recognition that in a BER encoding there were frequently octets sent
down the line where this was the only possible octet value allowed in
this position (at least in this version of the specification).  This
applied particularly to the "T" values, but also frequently to the length field if the value part of the
item (such as a BOOLEAN value) was fixed length.

By allowing the Packed Encoding Rules to take account of constraints (on, for example, the length
of strings or the sizes of INTEGERs), we can find many more cases where explicit transmission of
length fields is not needed, because both ends know the value of the "L" field.

A final "improvement" is to consider the "L" field for a SEQUENCE type.  Here each element of
the SEQUENCE is encoded as a TLV, and there is an outer level "TL" "wrapper" for the
SEQUENCE as a whole.  If we modify BER so that the "L" part of this wrapper is a count not of
octets, but of the number of TLVs in the value part of the SEQUENCE, this count is again fixed
(unless the SEQUENCE has OPTIONAL elements), and therefore often need not be transmitted,
even if there are inner elements whose length might vary.

If at first youIf at first you
don't succeed, try,don't succeed, try,
try, again!try, again!
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Consider the ASN.1 type shown in figure III-1. The BER encoding (modified to count TLVs rather
than octets for non-inner length fields) is shown in figure III-2.

You will see from Figure III-2 that there are a total of 23 octets sent down the line, but a receiver
can predict in advance the value of all but 11 of them - those marked as {????} (and knows
precisely where these 11 occur).  Thus we need not transmit the remaining 12 octets, giving a 50%
reduction in communications traffic.  Attractive!

The approach, then, was to take a BER encoding as the starting point, determine rules for what

octets need not be transmitted, and to delete those octets from the BER encoding before
transmission, re-inserting them (from knowledge of the type definition) on reception before
performing a standard BER decode.

Work was done on this approach over a period of some three years, but it fell apart.  A document
was produced, getting gradually more and more complex as additional (pretty ad hoc) rules were
added on what could and could not be deleted from a BER encoding, and went for international
ballot.  An editing meeting was convened just outside New York (around 1990), and the comments
from National Bodies were only faxed to participants at the start of the meeting.

Imagine the consternation when the dozen or so participants realised that EVERY National Body
had voted "NO", and, moreover, with NO constructive comments!  The approach was seen as too
complex, too ad hoc, and (because it still left everything requiring an integral number of octets)
insufficient to produce efficient encodings of things like "SEQUENCE OF BOOLEAN".  It was
quite clearly dead in the water.

Example ::= SEQUENCE
                {first    INTEGER (0..127),
                 second   SEQUENCE
                          {string  OCTET STRING (SIZE(2)),
                           name    PrintableString (SIZE(1..8)) },
                         third   BIT STRING (SIZE (8)) }

Figure III-1:   An example for encoding

        {U 16}          -- Universal class 16 ("T" value for SEQUENCE)
        {   3}          -- 3 items ("L" value for SEQUENCE)
          {U  2}          -- Universal class 2 ("T" value for "first")
          {   1}          -- 1 octet ("L" value for "first")
          {????}          -- Value of "first"
          {U 16}          -- Universal class 16 ("T" value for "second")
          {   2}          -- 2 items ("L" value for "second")
            {U  3}          -- Universal class 3 ("T" value for "string")
            {   2}          -- 2 octets ("L" value for "string")
            {????}{????}    -- Value of "string"
            {U 24}          -- Universal class 24 ("T" value for "name")
            {????}          -- 1 to 8 ("L" value for "name" - 5 say)
            {????}{????}{????}{????}{????}  -- Value of "name"
          {U  4}          -- Universal class 4 "T" value for "third"
          {   3}          -- 3 octets ("L" value for "third")
          {   0}          -- 0 unused bits in last octet of "third" "V"
          {????}{????}    -- Value of "third"

Figure III-2:  Modified BER encoding of figure III-1
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Many people had pre-booked flights which could not be changed without considerable expense, but
it was clear that what had been planned as a week-long meeting was over.  The meeting broke early
at about 11am for lunch (and eventually reconvened late at about 4pm).  Over the lunch-break
much beer was consumed, and the proverbial back-of-a-cigarette-packet recorded the discussions
(actually, I think it was a paper napkin – long since lost!).  PER as we know it today was born!
The rest of the week put some flesh on the bones, and the next two years produced the final text
for what was eventually accepted as the PER specification.  Implementations of tools supporting it
came a year or so later.

6  Some of the principles of PER

6.1  Breaking out of the BER straight-jacket

Probably the most important decisions in
that initial lunch-time design of PER were:

• To start with a clean piece of
paper (or rather napkin!) and
ignore BER and any concept of
TLV.  This was quite radical at the
time, and the beer probably helped
people to think the unthinkable!

• Not to be constrained to using an integral number of octets - another quite radical idea.

• To take as full account of constraints (subtyping) in the type definition as could sensibly be
done. (BER ignored constraints, perhaps largely because it was produced before the
constraint/subtype notation was introduced into ASN.1, and was not modified when that
notation came in around 1986).

• To produce the sort of encoding that a (by now slightly drunk!) intelligent human being
would produce - this was quite a challenge!

• Not to consider "extensibility" issues.  This was a pragmatic decision that made the whole
thing possible over a (long) lunch-time discussion, but of course provision for "future-
proofing" had to be (and was) added later.

So how would you the reader encode things?  Whatever you think is the obvious way is probably
what PER does!  In all the following cases, the "obvious" solution is what PER does.

What about the encoding of BOOLEAN?  Clearly a single bit set to zero or one is the "obvious"
solution.

What about

        INTEGER (0..7)
and
        INTEGER (8..11)

Clearly a three-bit encoding is appropriate for the former and a two-bit encoding for the latter.

Initial "principles"Initial "principles"
• Forget about TLV.Forget about TLV.
• Forget about octets - use bits.Forget about octets - use bits.
• Recognise constraints (subtypes).Recognise constraints (subtypes).
• Produce "intelligent" encodings.Produce "intelligent" encodings.
• Forget "extensibility" (initially).Forget "extensibility" (initially).
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An INTEGER value restricted to a 16-bit range could go into two octets with no length field.

But what about an unconstrained INTEGER?  (Meaning, in theory, integer values up to infinity,
and with BER capable of encoding integer values that take millions of years to transmit (even over
super- fast lines)?  Clearly an "L" will be needed here to encode the length of the integer value (and
here you probably want to go for a length count in octets).

If you have read about the details of BER encodings of "L", you will know that for length counts
up to 127 octets, "L" is encoded in a single octet, but that BER requires three octets for "L" once
the count is more than 255.  In PER, the count is a count of bits, items, or octets, but only goes
beyond two octets for counts of 64K or more - a fifty per cent reduction on the size of "L" in many
cases compared with BER.

For virtually all values of an unconstrained INTEGER, we will get a one octet "L" field, followed
by the minimum number of octets needed to hold the actual value being sent.  This is the same as
BER.

6.2  How to cope with other problems that a "T" solves?

So far, no mention has been made of a "T"
field for PER.  Do we ever need one?
There are three main areas in BER where
the "T" field is rather important. These are:

• To identify which actual alternative has been encoded as the value of a CHOICE type
(remember that all alternatives of a CHOICE are required to have distinct tags, and hence
have distinct "T" values).

• To identify the presence or absence of OPTIONAL elements in a SEQUENCE (or SET).

• To identify which element of a SET has been encoded where (remember that elements of a
SET can be encoded and sent in any order chosen by the sender).

How to do these things without a "T" encoding for each element?

To cope with alternatives in a CHOICE, PER encodes a "choice-index" in the minimum bits
necessary:  up to two alternatives, one bit; three or four alternatives, two bits;  five to seven
alternatives, three bits;  etc.

At this point we can observe one important
discipline in the design of PER.  The field-
width (in bits) for any particular part of
the encoding (in this case the field-width of
the choice-index) does not (must not)
depend on the abstract value being
transmitted, but can be statically determined by examining the type definition.  Hence it is
known unambiguously by both ends of the communication - assuming they are using the same type
definition.   But there is the rub!  If one is using a version 1 type definition and the other a version
2 type definition .... but we agreed not to consider this just yet!

What about OPTIONAL elements in a SET or SEQUENCE?   Again, the idea is pretty obvious.
We use one bit to identify whether an OPTIONAL element is present or absent in the value of the

• Use a "choice-index".Use a "choice-index".
• SET in a fixed order.SET in a fixed order.
• Bit-map for OPTIONAL elements.Bit-map for OPTIONAL elements.

The important field-length principle orThe important field-length principle or
rule:  Encode into fields of an arbitraryrule:  Encode into fields of an arbitrary
number of bits, but the length of fieldsnumber of bits, but the length of fields
must be statically determinable from themust be statically determinable from the
type definition, for all values.type definition, for all values.
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SET or SEQUENCE.  In fact, these bits are all collected together and encoded at the start of the
SET or SEQUENCE encoding rather than in the position of the optional element, for reasons to do
with "alignment" discussed below.

And so to the third item that might require a "T".  What about the encoding of SET - surely we
need the "T" encodings here?  Start of big debate about the importance of SET (where elements are
transmitted in an order determined by the sender) over SEQUENCE (where the order of encodings
is the order of elements in the type definition), and of the problems that SET causes.  In addition to
the verbosity of introducing some form of "T" encoding, we can also observe that:

• Allowing sender's options produces a combinatoric explosion in any form of exhaustive
test sequence (and hence in the cost of conformance checking) to check that (receiving)
implementations behave correctly in all cases.

The existence of multiple ways of sending the same information produces what in the security
world is called a "side-channel" - a means of transmitting additional information from a trojan
horse by systematically varying the senders options.  For example, if there are eight elements in a
SET, then 256 bits of additional information can be transmitted with each value of that SET by
systematically varying the order of elements.

This discussion led to the development of a further
principle for PER: there shall be NO sender's options
in the encoding unless there was an excellent reason
for introducing them.  PER effectively has no sender's options.  A canonical order is needed for
transmitting elements of a SET, and after much discussion, this was taken to be the tag order of the
elements (see the next chapter for more detail), rather than the textually printed order.  (In
allocating choice-index values to alternatives of a choice, the same tag-order, rather than textual
order is also used, for consistency).

It should, however, be noted that the term "PER" strictly refers to a family of four closely related
encoding rules.  The most important is "BASIC-PER" (with an ALIGNED and an UNALIGNED
variant discussed later). Although BASIC-PER has no senders options, it is not regarded as truly a
canonical encoding rule because values of the elements of a SET OF are not required to be sorted
into a fixed order, and no restrictions are placed on the way escape sequences are used in
encodings of GeneralString.  (If neither of these two types are used in an application specification,
then BASIC-PER is almost canonical (there are some other unimportant complex cases that never
arise in practice where it is not fully canonical.  There is a separate CANONICAL-PER (also with
an ALIGNED and an UNALIGNED version) that is truly canonical even when these types are
present.

6.3  Do we still need T and L for SEQUENCE and SET headers?

Clearly we do not!  We need no header encodings for these types, provided we can identify the
presence or absence of optional elements (which is done by the bit-map described earlier).

"Wrappers" are no longer needed.  Well ... that is sort of true - but see the discussion of
extensibility below, that re-introduces wrappers for elements added in version 2!

The sender's optionsThe sender's options
principle/rule:  Don't have any!principle/rule:  Don't have any!
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6.4  Aligned and Unaligned PER

But here we look at another feature of PER.
Basically, PER produces encodings into fields that
are a certain number of bits long and which are
simply concatenated end-to-end for transmission.
But there was recognition from the start that for
some ASN.1 types (for example, a sequence of
two-byte integers), it is silly to start every
component value at, say, bit 6.  Insertion of two
padding bits at the start of the sequence-of value
would probably be a good compromise between CPU costs and line costs.

This led to the concept of encoding items into bit-fields (which were simply added to the end of the
bits in earlier parts of the encoding) or into octet-aligned-bit-fields where padding bits were
introduced to ensure that the octet-aligned-bit-fields started on an octet boundary.

The intelligent reader (aren't you all?) will note that whilst the length of fields is (has to be)
statically determined from the type, the number of padding bits to be inserted before an octet-
aligned-bit-field is not fixed.  The number of bits in the earlier part of the encoding can depend on
whether optional elements of SET and SEQUENCE are present or not, and on the actual
alternative chosen in a CHOICE.  But of course, the encoding always contains information about
this, and hence a receiving implementation can always determine the number of padding bits that
are present and that have to be ignored.  Notice that whether a field is a bit-field or an octet-
aligned-bit-field again has to be (and is) statically determined from the type definition - it must not
depend on the actul value being transmitted, or PER would be bust!

The concept of "octet-aligned-bit-fields" and "padding bits" was in the original design, but later
people in air traffic control wanted the padding bits removed, and we now have two variants of
PER.  Both formally encode into a sequence of "bit-fields" and "octet-aligned-bit-fields",
depending on the type definition, but for "unaligned PER", there is no difference in the two -
padding bits are never inserted at the start of "octet-aligned-bit-fields".  With aligned PER, they
are.

There are actually a couple of other differences between aligned and unaligned PER, but these are
left to the later chapter on PER for details.

As a final comment - if you want to try to keep octet alignment for as long as possible after
insertion of padding bits, then using a single bit to denote the presence or absence of an
OPTIONAL element in a SEQUENCE or SET is probably not a good idea - better to collect all
such bits together as a "bit-map" at the start of the encoding of the SEQUENCE or SET.  This was
part of the original back-of-cigarette-packet design and was briefly referred to earlier. That feature
is present in PER.

7  Extensibility - you have to have it!

Third attempt!

One bit says it all - it is a version 1 value, or it contains
wrapped-up version 2 material.

You add padding bits for CPU-You add padding bits for CPU-
cycle efficiency, but then you arecycle efficiency, but then you are
asked to take them out for reallyasked to take them out for really
low-bandwidth lines!  Result:low-bandwidth lines!  Result:
ALIGNED and UNALIGNEDALIGNED and UNALIGNED
variants of BASIC-PER and ofvariants of BASIC-PER and of
CANONICAL-PER.CANONICAL-PER.

If at first you don'tIf at first you don't
succeed, try, try again!succeed, try, try again!
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When the second approach to better encodings (described above) was balloted internationally, it
almost failed again.

It is clear from the above discussion that unless both ends have exactly the same type definition for
their implementation, all hell will break loose - pardon the term.  They will have different views on
the fields and the field lengths that are present, and will produce almost random abstract values
from the encodings.

But do we really want to throw in the towel and admit that a very verbose TLV style of encoding is
all that is possible if we are to be "future-proof"?  NO!

How to allow version 2 to add things?  How about notation to indicate the end of the "root"
(version 1) specification, and the start of added version 2 (or 3 etc) material?  Will this help?

The most common case for requiring "extensibility" is the ability to add elements to the end of
SETs and SEQUENCEs in version 2.

Later, people argued - successfully - for the need to add elements in the middle of SETs and
SEQUENCEs, and we got the "insertion point" concept described in an earlier Section.

But let's stick to adding at the end for now.  Suppose we have added elements (most of which are
probably going to be OPTIONAL) at the end of a SEQUENCE, or added alternatives in a
CHOICE, or added enumerations in an ENUMERATED, or relaxed constraints on an INTEGER
(that list will do for now!).

How to handle that?  We first require that a type be marked "extensible" if we want "future-
proofing" (this is the ellipsis that can appear in many ASN.1 types).  This warns the version 1
implementation that it may be hit with abstract values going beyond the version 1 type, but more
importantly, it introduces one "extended" bit at the head of the version 1 encodings of all values of
that type.

The concept is that any of these "extensible" types has a "root" set of abstract values - version 1
abstract values.  If the abstract value being sent (by a version 1, version 2, or version 3, etc
implementation) is within the root, the "extended" bit is set to zero, and the encoding is purely the
encoding of the version 1 type.  But if it is set to 1, then abstract values introduced in version 2 or
later are present, and version 1 systems have a number of options, but importantly, extra length
(and sometimes identification) fields are included to "wrap-up" parts or all of these new abstract
values to enable good interworking with version 1 systems.  The "exception marker" enables
specifiers to say how early version systems are to deal with material that was added in later
versions, and (in the views of this author) should always be included if the extensibility marker is
introduced.

The exact form of encodings for "extensible" types is discussed in more detail in the PER chapter
following. later in this section.

8  What more do you need to know about PER?

It is interesting to note that whilst PER is now defined without any reference to BER (except for
encoding the value part of things like object identifiers and generalizedtime and real types), a PER
encoding of a value of the type shown in Figure III-1 actually produces exactly the same 11 octets
(shown in Figure III-2) that would have been produced in the earlier (abandonned) approach!
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This chapter has introduced most of the concepts of PER, but there are rather more things to learn
about PER than about BER.  These are all covered in the next chapter-but-one.

You need to know (well, you probably don't, unless you are writing an ASN.1 compiler tool!  See
the first part of this chapter!):

• What constraints (subtyping) affect the PER encoding of various types (these are called
"PER-visible constraints").

• What is the general structure of the encoding ("bit-fields" and "octet-aligned-bit-fields",
and how is a "complete encoding" produced.

• When are length fields included, and when are "lengths of lengths" needed, and how are
they encoded.

• How PER encodes SEQUENCEs, SETs, and CHOICEs.  (You already have a good idea
from the above text).

• How PER encodes all the other ASN.1 types.  (Actually, it references the BER "V" part
encoding a lot of the time.)

• How does the presence of the "extensibility marker" affect PER encodings.  (Again, the
above has given some outline of the effect - a one-bit overhead if the abstract value is in
the root, and generally an additional length field if it is not.

These are all issues that have been touched on above, but which are treated more fully later.

9  Experience with PER

There is now a lot of experience with
PER applied to existing protocol
specifications, and there is a growing
willingness among specifiers to
produce PER-friendly specifications
(that is, specifications where
constraints are consistently applied to
integer fields and lengths of strings
where appropriate).

There were some surprises when PER implementations started to become available.

First of all, it became possible to apply general-purpose compression algorithms to both the BER
and the PER encodings of existing protocols, and it turned out that such compression algorithms
produced about a 50% reduction in BER encodings (known for a long-time), but also produced a
50% reduction in PER encodings, which (uncompressed) turned out to be about a 50% reduction
of the uncompressed BER encodings.  Interesting!

If you apply Shannon's information theory, it is perhaps not quite so surprising.  A BER encoding
more or less transmits complete details of the ASN.1 type as well as the value of that type.  PER
transmits information about only the value, assuming that full details of the type are already
known at both ends.  So an uncompressed PER encoding carries less information, and can be

• Bandwidth reductions (even with addedBandwidth reductions (even with added
general-purpose compression - surprise?).general-purpose compression - surprise?).
• CPU-cycle reductions (real surprise).CPU-cycle reductions (real surprise).
• Complexity - only at analysis time!Complexity - only at analysis time!
• Relation to use of tools - increases theRelation to use of tools - increases the
advantages of tools.advantages of tools.
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expected to be smaller than, an uncompressed BER encoding, but the same statement applies to
compressed versions of these encodings.  This is borne out in practice.

Secondly - and this WAS a surprise to most ASN.1 workers - the number of CPU cycles needed to
produce an ASN.1 PER encoding proved to be a lot LESS than those required to produce an
ASN.1 BER encoding (and similarly for encoding).  Why?  Surely PER is more complex?

It is true that to determine the encoding to produce (what constraints apply, the field-widths to use,
whether a length field is needed or not) is much more complex for PER than for BER.  But that
determination is static.  It is part of generating (by hand or by an ASN.1 "compiler") the code to
do an encoding.

At encode time, it is far less orders to take an integer from memory, mask off the bottom three bits,
and add them to the encoding buffer (that is what PER needs to do to encode a value of
"INTEGER (0..7)") than to generate (and add to the encoding buffer) a BER "T" value, a BER "L"
value (which for most old BER implementations means testing the actual size of the integer value,
as most old BER implementations ignored constraints), and then an octet or two of actual value
encoding.  Similarly for decoding.

There is a further CPU-cycle gain in the code handling the lower layers of the protocol stack,
simply from the reduced volume of the material to be handled when PER is in use.

So PER seems to produce good gains in both bandwidth and CPU cycles, even for "old" protocols.
Where a specification tries to introduce bounds on integers and lengths, where they are sensible for
the application, the gains can be much greater.  Also protocols that have a lot of boolean "flags"
benefit heavily.  Figure III-3 shows a (slightly artificial!) SEQUENCE type for which the BER
encoding is 19 octets and the PER encoding a single octet!

There is a view in the implementor community that use of PER requires the use of a tool to analyze
the type definition, determine what constraints affect the encoding (and follow possibly long chains
of parameterization of these constraints if necessary), in order to generate correct code for use in
an instance of communication to encode\decode values.

There is no doubt that it is easier to make mistakes in PER encoding/decoding by hand than with
BER.  The PER specification is more complex, and is probably less easy to understand.  (If you
want my honest opinion, it is actually less well-written than the BER specification!  Mea Culpa!)

All these points increase the importance of using a well-debugged tool to generate encodings rather
than trying to do it by hand.  But hand-encodings of PER do exist, and are perfectly possible - but
be prepared to put a wet-towel over your head and drink lot's of coffee!  And importantly to test
against encodings/decodings produced using a tool.  These points also apply to hand-encoding of
BER, but to a much lesser extent.

            SEQUENCE
                { firstfield          INTEGER (0..7),
                  secondfield         BOOLEAN,
                  thirdfield          INTEGER (8..11),
                  fourthfield         SEQUENCE
                       {fourA    BOOLEAN,
                        fourB    BOOLEAN } }

Figure III-3:  Another example for encoding
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10  Distinguished and Canonical Encoding Rules

We have observed earlier that encoding rules in
which there are no options for the encoder are a
good thing.

Encodings produced by such encoding rules are
usually called "distinguished" or "canonical"
encodings.  At this level (no capitals!) the two
terms are synonymous!

However, if options are introduced (such as the indefinite and definite length encodings in BER -
see the next chapter) because you cannot agree, how do you agree on encoding rules with all
options removed?  The answer is two Standards!  The Basic Encoding Rules come in three
variants:

• BER - which allows options for the encoder.

• DER (Distinguished Encoding Rules) - which resolves all options in a particular direction.

• CER (Canonical Encoding Rules) - which resolves all options in the other direction!

It is arguably the case that CER is technically superior, but there is no doubt that DER has become
the de facto distinguished/canonical encoding for BER.

When we come to PER, the term "distinguished" is not used, but there is defined a BASIC-PER
and a CANONICAL-PER with both aligned and unaligned versions as described ealier.

We mentioned earlier the problem with encodings of the "SET OF xyz" type.  (There are also
problems with the encoding of GraphicString and GeneralString that are discussed in the later
chapters).  In a formal sense, the order of the series of "xyz" encodings that are being sent has no
significance at the abstract level (it is a SET, not a SEQUENCE), so the order of encodings is
clearly a senders option.  To determine a single "canonical" encoding for the values of this type
requires that the series of "xyz" encodings be SORTED (based on the binary value of each of these
encodings) into some defined order.  This can put a very significant load on CPU cycles, and also
on "disk-churning", and is not something to be lightly entered into!

So "normal PER" is not strictly-speaking canonical if a specification contains uses of "SET OF"
(although there are those that would argue that we get into "how many angels can sit on the end of
a pin" issues here).

"Canonical PER" specifies sorting of the "xyz" encodings to produce a truly one-to-one mapping
of an (unordered) set of values into bitstrings, each bitstring representing one possible set of
(unordered) values of the type "xyz".

Author's opinion:  I know of no applications where this degree of formality or precision matters.
CANONICAL-PER is basically not a good idea, but neither is the use of "SET OF" in
specifications!  Try to avoid both.  (Others may not agree!)

Your job is to produce Standards.Your job is to produce Standards.
If you can't agree, make itIf you can't agree, make it
optional, or better still anotheroptional, or better still another
Standard.  After all, if oneStandard.  After all, if one
Standard is good, many StandardsStandard is good, many Standards
must be better!must be better!
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11  Conclusion

This chapter has provided an introduction to the ASN.1 Basic Encoding Rules and the ASN.1
Packed Encoding Rules, showing their approach to encodings and their relative advantages and
disadvantages.

It has also discussed issues of extensibility or "future-proofing", and mentioned
canonical/distinguished encoding rules.

The chapter has formed a basic introduction to the detailed, factual (and dry!) description of BER
and of PER in the next two chapters.

Readers may also have heard of ASN.1 Encoding Rules with names like "Minimum Bit Encoding
Rules" (MBER), "Lightweight Encoding Rules" (LWER), "Clear text encoding rules", "BACNet
Encoding Rules", "Session Layer Encoding Rules" and perhaps others.  These represented attempts
(sometimes outside the standards community, sometimes within it) to develop other Encoding Rules
for ASN.1 that might be superior to both BER and PER in some circumstances (or which were
partial early attempts to move towards PER).  None of these is regarded as important today for
general use with ASN.1, but these are discussed a little further in the fourth (short) chapter of this
section.
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Chapter 2
The Basic Encoding Rules

(Or: Encodings for the 80s - simple, robust, but inefficient!)

Summary:  This chapter provides details of the Basic Encoding Rules.  It describes:

• The form of the T part of a TLV encoding (the identifier octets), including the
primitive/constructed bit.

• The short, definite, and indefinite forms of encoding for the L part of the TLV (the length
octets).

• The V part of the TLV encoding  (the contents octets) for each of the primitive types, taken
roughly in order of increasing complexity.

• The encoding of the constructed types (such as SET and SEQUENCE)

• The encoding of remaining types, such as the character string and time types and types that
represent "holes" of various sorts.

1  Introduction

The TLV principles underlying BER encodings have been extensively
introduced in earlier chapters, and the reader should have little
difficulty in going to the actual Standard/Recommendation for
authoritative details.

For completeness, however, this chapter provides examples of all the encodings, and gives some
further explanation in a few cases.

You have alreadyYou have already
learnt the principleslearnt the principles
of BER encodings,of BER encodings,
now for the details.now for the details.
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2  General issues

2.1  Notation for bit numbers and
diagrams

One of the problems with encoding specifications in
the late 1970s was that the bits of an octet were
sometimes numbered from left to right in diagrams,
sometimes the other way, and sometimes the most
significant bit was shown at the right, and sometimes
at the left.  The order of octet transmission from diagrams could also be right to left in some
specifications and left to right in others.  Naturally there was often confusion!

In the case of ASN.1 (and this book), we show the first transmitted octet to the left (or above) later
transmitted octets, and we show each octet with the most significant bit on the left, with bit
numbers running from 8 (most significant) to 1 (least significant) as shown in Figure III-4.

Whether within an octet the most or least significant bit is transmitted first (or the bits are
transmitted in parallel) is not prescribed in ASN.1.  This is determined by the carrier protocols.
On a serial line, most significant first is the most common.  It is the terms "most significant bit"
and "least significant bit" that link the ASN.1 specifications to the lower layer carrier
specifications for the determination of the order of bits on the line.

The order of octets on the line is entirely determined by ASN.1.  When encoding a multi-octet
integer value, ASN.1 specifies that the most significant octet of the value is transmitted first, and
hence is shown in diagrams in the standard (and in this book) as the left-most octet of the value
(see the encoding of the integer type later in this chapter).

If the specs are not clear onIf the specs are not clear on
what order the bits in an octetwhat order the bits in an octet
are sent, there will be problems!are sent, there will be problems!
There were in the late 1970s -There were in the late 1970s -
largely OK now, but be careful!largely OK now, but be careful!

8 7 6 5 4 3 2 1Bit number 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

....

MSB                    LSB MSB                    LSB MSB                    LSB MSB                    LSB

First octet in
encoding

Last octet in
encoding

MSB = Most significant bit in octet

LSB = Least significant bit in octet

Figure III-4:  Bit numbering and order of octets
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2.2  The identifier octets

Every ASN.1 type has a tag of one of four classes, with a number for
the tag, as discussed earlier. In the simplest case these values are
encoded in a single octet as shown in Figure III-5.

We see that the first two bits encode the class as follows:

        Class        Bit 8  Bit 7
        Universal        0       0
        Application      0       1
        Context-specific 1       0
        Private          1       1

The next bit (bit six) is called the primitive/constructed (P/C) bit, and we will return to that in a
moment.

The last five bits (bits 5 to 1) encode the number of the tag.  Clearly this will only cope with
numbers that are less than 32.  In fact, the value 31 is used as an escape marker, so only tag
numbers up to 30 encode in a single octet.

First the T part,First the T part,
encoding the tagencoding the tag
value.value.

Class P/C Number

 8    7    6    5    4    3    2    1

Figure III-5:  Encoding of the identifier octet (number less than 31)
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For larger tag values, the first octet has all ones in bits 5 to 1, and the tag value is then encoded in
as many following octets as are needed, using only the least significant seven bits of each octet,
and using the minimum number of octets for the encoding.  The most significant bit (the "more"
bit) is set to 1 in the first following octet, and to zero in the last.  This is illustrated in Figure III-6.

Thus tag numbers between 31 and 127 (inclusive) will produce two identifier octets, tag numbers
between 128 and 16383 will produce three identifier octets.  (Most ASN.1 specifications keep tag
numbers below 128, so either 1 identifier octet - most common - or two identifier octets is what
you will normally see, but I have seen a tag number of 999!.

What about the primitive/constructed bit?  This is required to be set to 1 (constructed) if the V
part of the encoding is itself a series of TLV encodings, and is required to be set to 0 (primitive)
otherwise. Thus for the encoding of an integer type or boolean type (provided any tagging was
implicit), it is always set to 0. For the encoding of a SET or SET-OF etc, it is always set to 1.  In
these cases it is clearly redundant, provided the decoder has the type definition available.

But having this bit present permits a style of decoding architecture in which the incoming octet-
stream is first parsed into a tree-structure of TLV encodings (with no knowledge of the type
definition), so that the leaves of the tree are all primitive encodings. The tree is then passed to code
that does know about the type definition, for further processing.

There is, however, a rather more important role for this bit.  As we will see later, when
transmitting a very long octet string value (and the same applies to bit string and character string
values), ASN.1 permits the encoder to either transmit as the entire V part the octets of the octet
string value (preceded by a length count), or to fragment the octet string into a series of fragments
which are each turned into TLV encodings which then go into the V part of the main outer-level
encoding of the octet string value.  Clearly a decoder needs to know which option was taken, and
the primitive/constructed bit tells it precisely that.

Class P/C 1      1      1      1      1

 8    7    6    5    4    3    2    1

Figure III-6:  Encoding of the identifier octets (numbers greater than 30)

1 Number

0 Number

1 Number
.
.
.
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Why is fragmentation in this way useful?  This will become clearer in the next Clause, when we
consider the form of the "L" encoding, but the problem is roughly as follows.

If our V part is primitive, clearly all possible octet values can appear within it, and the only
mechanism that ASN.1 provides for determining its length is to have an explicit count of octets in
the "L" part.  For extremely long octet values, this could mean a lot of disk churning to determine
the exact length (and transmit it) before any of the actual octets can be sent.  If however, the V
part is made up of a series of TLVs, we can find ways of terminating that series of TLVs without
an up-front count, so we can transmit octets from the value as they become available, without
having to count them all first.

2.3  The length octets

There are three forms of length encoding used in
BER,  called the short form, the long form, and the
indefinite form.  It is not always possible to use all
three forms, but where it is, it is an encoder's option
which to use.  This is one of the main sources of
optionality in BER, and the main area that
canonical/distinguished encoding rules have to
address.

2.3.1  The short form

This is illustrated in Figure III-7.

The short form can be used if the number of octets in
the V part is less than or equal to 127, and can be
used whether the V part is primitive or constructed.  This form is identified by encoding bit 8 as
zero,  with the length count in bits 7 to 1 (as usual, with bit 7 the most significant bit of the
length).

Now the L part - three forms areNow the L part - three forms are
available in general, sometimesavailable in general, sometimes
only two, and occasionally onlyonly two, and occasionally only
one.  The encoder chooses the oneone.  The encoder chooses the one
to use.to use.

Very obvious - one octet with theVery obvious - one octet with the
top bit zero and the remainingtop bit zero and the remaining
bits encoding the length as anbits encoding the length as an
octet count.octet count.

 8    7    6    5    4    3    2    1

Figure III-7:  The short form encoding of a length (lengths up to 127)

0 Length
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2.3.2  The long form

If bit 8 of the first length octet is set to 1, then we have
the long form of length.  This form can be used for all
types of V part, no matter how long or short, no matter
whether primitive or constructed.  In this long form, the
first octet encodes in its remaining seven bits a value N
which is the length of a series of octets that themselves
encode the length of the V part.  This is shown in Figure
III-8.

There is no requirement that the minimum number of octets be used to encode the actual length, so
all the length encodings shown in Figure III-9 are permitted if the actual length of the V part is 5.

This was actually introduced into ASN.1 in the early 1980s just before the first specification was
finalised (early drafts required length encodings to be as small as possible).  It was introduced
because there were a number of implementors that wanted N to have a fixed value (typically 2),
then the N (2) octets that would hold the actual length value, then the V part.  There are probably
still BER implementations around today that always have three length octets (using the long form
encoding), even where one octet (using the short form encoding) would do.

For longer lengths - a lengthFor longer lengths - a length
of the length field, then theof the length field, then the
length itself.  Commonly alength itself.  Commonly a
total of three octets, the firsttotal of three octets, the first
being set to two.being set to two.

 8    7    6    5    4    3    2    1

Figure III-8:  The long form encoding of a length (all lengths)

1 Length of length (N)

.

.

.

Last octet (N) of length

First octet (1) of length
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There is a restriction on the first length octet in the long form.  N is not allowed to have the value
127.  This is "reserved for future extensions", but such extensions are now highly unlikely.  If you
consider how long the V part can be when N has the maximum value of 126, and how large an
integer value such a V part can hold, you will find that the number is greater than the number of
stars in our galaxy.  It was also calculated that if you transmit down a line running at one tera-bit
per second the longest possible V part, it would take one hundred million years to transmit all the
octets!  So there is no practical limit imposed by BER on the size of the V part, or on the value of
integers.

2.3.3  The indefinite form

The indefinite form of length can only be used (but
does not have to be) if the V part is constructed, that is
to say, consists of a series of TLVs.  (The length octets
of each of these TLVs in this contained series can
independently be chosen as short, definite, or indefinite
where such choices are available - the form used at the
outer level does not affect the inner encoding.)

In the indefinite form of length  the first bit of the first octet is set to 1, as for the long form, but
the value N is set to zero. Clearly a value of zero for N would not be useful in the long form, so
this serves as a flag that the indefinite form is in use.  Following this single octet, we get the series
of TLVs forming the V part, followed by a special delimiter that is a pair of zero octets.

This is shown in Figure III-10.

With this form you do not needWith this form you do not need
to count your octets before youto count your octets before you
start to send them - just ship astart to send them - just ship a
series of fragments andseries of fragments and
terminate with 0000.terminate with 0000.

 0 0 0 0 0 1 0 1

8 7 6 5 4 3 2 1

Figure III-9:  Options for encoding a length of  5

 1 0 0 0 0 0 1 0

8 7 6 5 4 3 2 1

 0 0 0 0 0 0 0 0

8 7 6 5 4 3 2 1

 0 0 0 0 0 1 0 1

8 7 6 5 4 3 2 1

 1 0 0 0 0 0 1 1

8 7 6 5 4 3 2 1

 0 0 0 0 0 0 0 0

8 7 6 5 4 3 2 1

 0 0 0 0 0 0 0 0

8 7 6 5 4 3 2 1

 0 0 0 0 0 1 0 1

8 7 6 5 4 3 2 1

etc
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How does this work?   The most important thing to note is that a decoder is processing the series
of TLVs, and when it hits the pair of zero octets it will interpret them as the start of another TLV.
So let us do just that.  The zero T looks like a primitive encoding (bit six is zero) with a tag of
UNIVERSAL class ZERO, and a definite form length encoding of zero length (zero octets in the V
part).

If you now refer back to the assignment of UNIVERSAL class tags given in Figure II-7, you will
see that UNIVERSAL class zero is "Reserved for use by Encoding Rules" (and remember that
users are not allowed to assign UNIVERSAL class tags).  So a pair of zero octets can never
appear as a TLV in any real encoding, and this "special" TLV can safely be defined by BER as the
delimiter for the series of TLVs in the V part of an indefinite form encoding.

We have said earlier that, within an indefinite form TLV we may have inner TLVs that themselves
are constructed and have an indefinite form of length.  There is no confusion: a pair of zero octets
(when a TLV is expected) terminates the innermost "open" indefinite form.

2.3.4  Discussion of length variants

Why do we need so many different variants of length?   Clearly they all have some advantages and
disadvantages.  The short form is the briefest when it can be used, the long form is the only one
that can handle very large primitive encodings, and seems to many to be intuitively simpler than
the indefinite form.  The indefinite is the only one which allows very large OCTET STRING

Figure III-10:  An indefinite length encoding

 1 0 0 0 0 0 0 0

8 7 6 5 4 3 2 1

 0 0 0 0 0 0 0 0

8 7 6 5 4 3 2 1

 0 0 0 0 0 0 0 0

8 7 6 5 4 3 2 1

Complete TLV encoding

Complete TLV encoding

Complete TLV encoding

Complete TLV encoding

.

.

.
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values or SEQUENCE OF values to be transmitted without counting the number of octets in the
value before starting.

The disadvantage of having three options is the extra implementation complexity in decoders, and
the presence of encoding options creating side-channels and extra debugging effort.  If we want to
remove these options, then we have to either say "use indefinite length form whenever possible"
(and make statements about the size of fragment to use when fragmenting an octet string), or to
say "use short form where possible, otherwise use long form with the minimum value of N needed
for the count".  Both of these approaches are standardised!  The distinguished/canonical encoding
rules that take the former approach are called the Canonical Encoding Rules (CER), and those that
take the latter approach are called the Distinguished Encoding Rules (DER).  Applications with
requirements for canonical/distinguished encoding rules will mandate use of one of these in the
application specification.

3  Encodings of the V part of the main types

In the examples for this clause we use the ASN.1 value
notation to specify a value of a type, and then show the
complete encoding of that value using hexadecimal notation
for the value of each octet.

The primary focus here is to illustrate the encoding of the V
part for each type, but it must be remembered that there will
be other permissible length encodings in addition to the one
illustrated (as discussed earlier), and that if implicit tagging
were to be applied, the T part would differ.

The encoding of each of the following types is always primitive unless stated otherwise.  The types
are taken roughly in ascending order of complexity!

3.1  Encoding a NULL value

The value of

        null NULL ::= NULL

(the only value of the NULL type) is encoded as

                T       L       V
null:           05      00      empty

Note that whilst we have described our structure as TLV, it is (as in this case) possible for there to
be zero octets in the V part if the length is zero.  This can arise in cases other than NULL.  So for
example, a SEQUENCE OF value with an iteration count of zero would encode with an L of zero.
Similarly a SEQUENCE, all of whose elements were optional, and which in an instance of
communication were all missing, would again encode with an L of zero.

Encoding the V part isEncoding the V part is
specific to each type.  Inspecific to each type.  In
many cases it is obvious,many cases it is obvious,
but the majority of typesbut the majority of types
throw up problems whichthrow up problems which
produce a littleproduce a little
complexity in thecomplexity in the
encoding.encoding.

Utterly simple!Utterly simple!
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3.2  Encoding a BOOLEAN value

The values of

        boolean1 BOOLEAN ::= TRUE

        boolean2 BOOLEAN ::= FALSE

are encoded as

                T       L       V
boolean1:       01      01      FF

boolean2:       01      01      00

For the value TRUE, an encoding of hex FF is shown.  This is the only permissible encoding in
DER and CER, but in BER any non-zero value for the V part is permitted.

3.3  Encoding an INTEGER value

A two's complement encoding of the integer values into the
smallest possible V part is specified.  When two's
complement is used "smallest possible" means that the first
(most significant) nine bits of the V part cannot be all zeros or
all ones, but there will be values that will encode with the first
eight bits all zeros or ones.

Note that it would in theory have been possible to use an L value of zero and no V part to
represent the integer value zero, but this is expressly forbidden by BER - there is always at least
one octet in the V part.

Thus the values of

        integer1 INTEGER ::= 72

        integer2 INTEGER ::= 127

        integer3 INTEGER ::= -128

        integer4 INTEGER ::= 128

are encoded as

                T       L       V
integer1        02      01      48

integer2        02      01      7F

integer3        02      01      80

integer4        02      02      0080

If the integer type was defined with a distinguished value list, this does not in any way affect the
encoding.

Still pretty obvious, butStill pretty obvious, but
we now have encoderswe now have encoders
options!options!

Top nine bits must not beTop nine bits must not be
the same - nine?  Yesthe same - nine?  Yes
NINE.NINE.
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3.4  Encoding an ENUMERATED value

The definition of an enumerated type may include integer
values to be used to represent each enumeration during
transfer, or (post 1994) may allow those values to be
automatically assigned in order from zero.  In the latter
case all such values will be positive, but in the general
case a user is allowed to assign negative values for
enumerations (nobody ever does).  BER takes no account of the (common) case where all
associated values are positive:  the encoding of an enumerated value is exactly the same as the
(two's complement) encoding of the associated integer value (except that the tag value is different
of course).

In practice, this only makes an efficiency difference if there are more than 127 enumerations,
which is rare.

3.5  Encoding a REAL value

The encoding of a real value is quite complex.  First
of all, recall that the type is formally defined as the
set of all values that can be expressed base 10,
together with the set of all possible values that can
be expressed base 2, even if these are the same
numerical value.  This means that different
encodings are applied to these two sets of values, and the application may apply different
semantics.  (There is one exception to this - the value zero has just one encoding, zero octets in the
V part.)  For base 10 values, the encoding is character-based, for base 2 values, it is binary
floating point.

There are also two further values of type REAL - PLUS-INFINITY and MINUS-INFINITY, with
their own special encodings.

Note that it is possible to subtype type REAL to contain only base 10 or base 2 values, effectively
giving the application designer control over whether the character-based encoding or the binary-
based encoding of values of the type are to be used.

3.5.1  Encoding base 10 values

If the (non-zero) value is base 10, then the contents octets
(the V part) start with one octet whose first two bits are 00
(other values are used for the base 2 values and the special
values PLUS-INFINITY and MINUS-INFINITY).  Octets
after this initial octet are a series of ASCII characters (8 bits
per character) representing digits 0 to 9, space, plus sign, minus sign, comma or full-stop (for
"decimal mark"), and capital E and small e (for exponents), in a format defined in the ISO
Standard 6093.  This standard has a lot of options, and in particular defines "Numerical
Representation 1" (NR1), NR2, and NR3. Which of these is used is coded as values 1, 2, or 3
respectively into the bottom six bits of the first contents octet.  Even within these representations,
there are many options.  In particular, arbitrary many leading spaces can be included, plus signs
are optional, and so on.

You might expect only positiveYou might expect only positive
values for enumerations - notvalues for enumerations - not
so!  Encode as a generalso!  Encode as a general
integer.integer.

Forget about floating point formatForget about floating point format
standards.  What matters is howstandards.  What matters is how
easily you can encode/decode witheasily you can encode/decode with
real hardware.real hardware.

A character encoding baseA character encoding base
10 is available.  (But not10 is available.  (But not
much used!)much used!)
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When used with DER and CER (and all versions of PER), options are restricted to NR3, spaces
and leading zeros are in general forbidden, the full-stop has to be used for any "decimal mark", and
the plus sign is required for positive values.  The mantissa is required to be normalised so that
there are no digits after the "decimal mark".  In each case below, the second column shows the way
the same real value would be encoded in DER/CER/PER.

We will not attempt here a detailed description of ISO 6093, but give below some examples of the
resulting strings.  Note that whilst there may be leading spaces, there are never trailing spaces.
There may also be leading zeros and trailing zeros.

NR1 encodes only simple whole numbers (no decimal point, no exponent).  Here are some
examples of NR1 encodings, where # is used to denote the space character:

                4902                    4902.E+0
                #4902                   4902.E+0
                ###0004902              4902.E+0
                ###+4902                4902.E+0
                -004902                 -4902.E+0

NR2 requires the presence of a "decimal mark" (full-stop or comma as an encoders option).  Here
are some examples of NR2 encodings:

                4902.00                 4902.E+0
                ###4902,00              4902.E+0
                000.4                   4.E-1
                #.4                     4.E-1
                4.                      4.E+0

NR3 extends NR2 by the use of a base 10 exponent represented by a capital E or lower case e.
Examples of NR3 are:

                +0.56E+4                56.E2
                +5.6e+03                56.E2
                #0.3E-04                3.E-5
                -2.8E+000000            -28.E-1
       ####000004.50000E123456789      45.E123456788

3.5.2  Encoding base 2 values

NOTE — For a full understanding of this material
the reader will need some familiarity with the form
of computer floating point units - something
assembler language programmers of the 1960s
were very familiar with, but something today's
programmers can usually forget about!  You may
want to skim this material very quickly, or even
totally ignore it.

Base 2 values are encoded in a form that is similar to the floating point formats used when a
computer system dumps the contents of a floating point unit into main memory.  We talk about the
mantissa (M), the base (B) and the exponent (E) of the number.

However, in real floating point units, the base may be either 2, 8 or 16 (but is fixed for that
hardware).  In an ASN.1 encoding, the value of B has to be sent.  This is done in the first contents
octet.   We then need the value of the exponent for this numerical value, and of the mantissa.

A more "traditional" floating pointA more "traditional" floating point
format is also available. This isformat is also available. This is
where effort was expended to makewhere effort was expended to make
encoding/decoding easy.encoding/decoding easy.
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Let us look at the first contents octet in the case of base 2 values (recall that the first contents octet
for base 10 values started 00 and then encoded NR1, NR2, or NR3).  This first content octet is
illustrated in Figure III-11.

The first bit (bit 8, most significant) is set to 1 to identify this as a base 2 value.  The next bit (S)
is the sign of the number, with the mantissa represented (later) as a positive integer value.  The
next two bits (B) encode the base (2, 8, or 16, with the fourth value reserved for future use).  The
next two bits encode a "scaling factor" value called F, restricted to values 0 to 3, and the final two
bits encode the length (LE) of the exponent encoding (the exponent is encoded as a two's
complement integer value immediately following this initial octet). The four values of LE allow for
a one octet, two octet, or three octet exponent, with the fourth value indicating that the exponent
field starts with a one octet length field, then the exponent value.  Following the encoding of the
exponent field we get the mantissa (M) as a positive integer encoding, terminated by the end of the
contents octets (V part) in the usual way.

The actual value of the real number encoded in this way is:

                S x M x (2 ** F) x (B ** E)

where ** above denotes exponentiation and x denotes multiplication.

This is a fairly familiar way to represent floating point numbers, apart from the presence of F.  We
also need to discuss a little more the use of sign and magnitude instead of a 2's complement (or
even 1's complement) mantissa.

In the early 1980s, there was very considerable variation in the form of floating point units, even
within a single computer manufacturer, and although there are now de jure standards for floating
point representation, there is in practice still a wide de facto variation.

What has to be achieved (and was achieved) in the ASN.1 encoding of real is a representation that
makes it (fairly) easy and quick for any floating point architecture to encode or decode values.

Consider the choice between sign and magnitude or two's complement for the mantissa.  If your
actual hardware is two's complement, you can easily test the number and set the S bit, then negate
the number, and you have a sign and magnitude format.  If, however, your hardware was sign and

Figure III-11:  Encoding of the first contents octet of a base 2 real value

 8    7    6    5    4    3    2    1

1 S B F LE

S = Sign of mantissa

B = Base

F = Scaling Factor

LE = Length of Exponent
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magnitude and you are asked to generate a two's complement representation for transfer, the task is
much more difficult.  It is clear then that sign and magnitude is right for transfer, no matter which
type of machine is most common.

The scaling factor F is included for a similar reason.  All mantissa's have an implied decimal point
position when the floating point value is dumped into main memory,  but this is frequently not at
the end of the mantissa field, that is, the mantissa is not naturally considered as an integer value.
However, it is an integer value we wish to transfer in the ASN.1 encoding, and rather than try to
encode the position of the implied decimal point, instead we recognise that the implied point can be
moved one place to the right if we subtract one off the exponent value (for base 2).  If the base is
8, one off the exponent value moves the implied decimal point three places right, and base 16 four
places.  Thus with a fixed (for this hardware) decrement to the exponent, we can get the implied
decimal point close to the end of the mantissa.  In particular, to within three positions of the end
for a base 16 machine.  By encoding an F value (which again is fixed for any given hardware), we
can move the implied decimal point the remaining zero to three bits to get it exactly at the end.  Of
course a decoder has to multiply the resulting number by 2 to the power F, but this is quick and
easy to do in a floating point unit.

When this encoding was developed in the mid-1980s, there was a lot of discussion of these issues,
and there was agreement over a range of vendors that the format provided a very good "neutral"
format that they could all encode into and decode out of from a range of actual floating point
hardware.  Recommendation X.690/ISO 8825 Part 1 has a substantial tutorial annex about both
the rationale for including F and also describing in some detail the algorithm needed to statically
determine the encodings for a given floating point unit, and for encoding and decoding values.  The
interested reader is referred to this tutorial for further detail.

Once again, in producing a canonical/distinguished encoding, we have to look at what options are
being permitted,  and eliminate them.  We also have to concern ourselves with "normalization" of
the representation.  (This was illustrated in the character case above, where we required 4.E-1
rather than 0.4.  A similar concern arises with the binary encoding.)  For DER/CER/PER (all
forms) we require that B be 2, that the mantissa be odd, that F be zero, and that the exponent and
mantissa be encoded in the minimum number of octets possible.  This is sufficient to remove all
options.

3.5.3  Encoding the special real values

There were early discussions about allowing special
encodings for real values of the form "underflow" and
"overflow", and for pi and other "interesting" values, but
the only special values standardised so far (and there are
unlikely to be any others now) are PLUS-INFINITY and
MINUS-INFINITY.

Recall that for a base 2 encoding the first (most significant) bit of the first contents octet is 1, and
that for a base 10 encoding, the first two bits are zero.  A special value encoding has the first two
bits set to zero and one, with the remaining six bits of the first (and only) content octet identifying
the value (two encodings only used).

And finally there areAnd finally there are
"special" real values that"special" real values that
cannot easily be represented bycannot easily be represented by
normal character or floatingnormal character or floating
point formats.point formats.



266                                                                                                                           © OSS,31 May 1999

3.6  Encoding an OCTET STRING value

As was pointed out earlier, there are two ways of
encoding an octet string - either as a primitive
encoding, or as a series of TLV encodings, which
we illustrate using the indefinite form for the
outer-level TLV.

Thus:

                octetstring OCTET STRING ::=
                   '00112233445566778899AABBCCDDEEFF'H

encodes as either

                T       L       V
octetstring:    04      10      00112233445566778899AABBCCDDEEFF
or as
octetstring:    24      80
                                T       L       V
                                04      08      0011223344556677
                                04      08      8899AABBCCDDEEFF
                        0000

There are a number of points to note here.   Of course fragmentation makes little sense for such a
short string, but it illustrates the form. We chose here to fragment into two equal halves, but in
general we can fragment at any point.  We chose not to fragment our fragments, but we are
actually permitted to do so!  In DER fragmentation is forbidden.  In CER the fragment size is fixed
at 1000 octets (no fragmentation if 1000 octets or under), and additional fragmentation of
fragments is forbidden.

Finally, note that if the OCTET STRING had been implicitly tagged, the outer most T value (24 -
universal class 4, constructed), would reflect the replacement tag, but the tag on each fragment
would remain 04 (universal class 4, primitive).

3.7  Encoding a BIT STRING value

For a BIT STRING value, we talk about the leading
bit of the bitstring and the trailing bit, with the
leading bit numbered as bit zero if we list named
bits.  The leading bit goes into the most significant
bit of the first octet of the contents octets.  Thus
using the diagram conventions detailed earlier, the
bits are transmitted with the left-most on the paper
as the leading bit, proceeding to the right-most.
When specifying a BIT STRING value, the value
notation declares the left-most bit in the notation as the leading bit, so there is general consistency,
except that the numbering of bits in a BIT STRING type goes in the opposite direction to the
numbering of bits in an octet.

As with an OCTET STRING value, BIT STRING value encodings can be primitive or broken into
fragments.  There is only one additional complication - the length count in BER is always a count
of octets, so we need some way of determining how many unused bits there are in the last octet.
This is handled by adding an extra contents octet at the start of the contents octets saying how

Pretty simple again - except that ifPretty simple again - except that if
you have a very long octet string youyou have a very long octet string you
may want to fragment it to avoidmay want to fragment it to avoid
counting it before transmission.counting it before transmission.
Again, an encoder's option.Again, an encoder's option.

BER length counts are always inBER length counts are always in
octets.  So how to determine theoctets.  So how to determine the
exact length of a bit stringexact length of a bit string
encoding?  And what bit-value toencoding?  And what bit-value to
pad with to reach an octetpad with to reach an octet
boundary?  (Answer to the latterboundary?  (Answer to the latter
- encoder's option!)- encoder's option!)
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many unused bits there are in the last octet. (In CER/DER these unused bits are required to be set
to zero.  BER has their values as a sender's option.)

If fragmentation of the bitstring into separate TLVs is performed, the fragments are required to be
on an octet boundary, and the extra octet described above is placed (only) at the start of the last
fragment in the fragmented encoding.

Thus:

                bitstring BIT STRING ::=
                   '1111000011110000111101'B

encodes as either

                T       L       V
bitstring:      03      0F      02F0F0F4
or as
bitstring:    23        80
                                T       L       V
                                03      02      F0F0
                                03      02      02F4
                        0000

Again, fragmentation makes little sense for such a short string, and again in DER fragmentation is
forbidden.  In CER the fragment size is again fixed at 1000 octets (no fragmentation if 1000 octets
or under), and additional fragmentation of fragments is forbidden.

Apart from the extra octet detailing the number of unused bits, the situation is in all respects the
same as for OCTET STRING.

3.8  Encoding values of tagged types

If an implicit tag is applied (either by use of the word
IMPLICIT, or because we are in an environment of
automatic or implicit tagging), then as described in
Section II, the class and number of the new tag
replaces that of the old tag in all the above encodings.

If however, an explicit tag is applied, we get the original encoding with the old tag, placed as a
(single) TLV as the contents octets of a constructed encoding whose T part encodes the new
(explicit) tag.

For example:

        integer1 INTEGER ::= 72

        integer2 [1] IMPLICIT INTEGER ::= 72

        integer3 [APPLICATION 27] EXPLICIT INTEGER ::= 72

are encoded as

The final discussion of tagging!The final discussion of tagging!
If its not clear by the end of thisIf its not clear by the end of this
clause, throw the book in theclause, throw the book in the
river!river!
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                T       L       V
integer1        02      01      48

integer2        C1      01      48

integer3        7B      03
                                T       L       V
                                02      01      48

where the 7B is made up, in binary, as follows:

       Class           P/C       Number
        APPLICATION     Constructed       27
         01                  1          11011 = 01111011 = 7B

3.9  Encoding values of CHOICE types

In all variants of BER, there are no additional TL
wrappers for choices.  The encoding is just that of
the chosen item.  The decoder knows which was
encoded, because the tags of all alternatives in a
choice are required to be distinct.

So (compare with the encodings for the INTEGER and BOOLEAN types given above)

        value1 CHOICE
                { flag  BOOLEAN,
                  value INTEGER} ::= flag:TRUE
and
        value2 CHOICE
                {flag  BOOLEAN,
                 value INTEGER} ::= value:72

we get the encodings:

                        T       L       V
value1                  01      01      FF

value2                  02      01      48

3.10  Encoding SEQUENCE OF values

This is quite straight-forward - an outer (constructed)
TL as the wrapper, with a TLV for each element (if
any) in the SEQUENCE OF value.

So

        temperature-each-day SEQUENCE (7) OF INTEGER
                        ::= {21, 15, 5, -2, 5, 10, 5}

could be encoded as:

This is either obvious or curious!This is either obvious or curious!
There is no TLV associated with theThere is no TLV associated with the
CHOICE construct itself - youCHOICE construct itself - you
just encode the TLV for a value ofjust encode the TLV for a value of
the chosen alternative.the chosen alternative.

You should know this alreadyYou should know this already
from the general discussion of thefrom the general discussion of the
TLV approach.  Nothing newTLV approach.  Nothing new
here.here.
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temperature-each-day:   T       L       V
                        30      80
                                        T       L       V
                                        02      01      15
                                        02      01      0F
                                        02      01      05
                                        02      01      FE
                                        02      01      05
                                        02      01      10
                                        02      01      05
                                0000

Of course, we could have employed definite length encoding at the outer level, which in this case
would have saved two octets if the short form had been employed.

3.11  Encoding SET OF values

The encoding of set-of is just the same as for sequence-of except that the outer T field is 31.  If,
however, this were a CER or DER encoding then the seven TLVs would be sorted into ascending
order and we would get:

        unordered-weeks-temps SET (7) OF INTEGER
                        ::= {21, 15, 5, -2, 5, 10, 5}

weekstemperatures:      T       L       V
                        31      80
                                        T       L       V
                                        02      01      FE
                                        02      01      15
                                        02      01      10
                                        02      01      0F
                                        02      01      05
                                        02      01      05
                                        02      01      05
                                0000

Notice that the sort is on the final encodings of each element, so the temperature -2 sorts ahead of
the temperature 21.

3.12  Encoding SEQUENCE and SET values

These are exactly similar, except that now the inner TLVs
(one for each element of the sequence or set) will be of
varying size and have varying tags.  In some cases these
elements may themselves be sequences or sets, so we may get

What are the actual set of abstract values?  Is {3, 2} the same value asWhat are the actual set of abstract values?  Is {3, 2} the same value as
{2, 3}?  It should be!  So we must have just one encoding in{2, 3}?  It should be!  So we must have just one encoding in
distinguished/canonical encoding rules for this single value.  This produces adistinguished/canonical encoding rules for this single value.  This produces a
significant cost at encode time.  Best not to use set-of if you want to havesignificant cost at encode time.  Best not to use set-of if you want to have
distinguished/canonical encodings.distinguished/canonical encodings.

Back to simplicity again.Back to simplicity again.
Nested TLVs, to anyNested TLVs, to any
depth.depth.
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deeper nesting of TLVs (to any depth).

If there are optional elements, and the abstract value of the sequence or set does not contain a
value for these elements, then the corresponding TLV is simply omitted.

In the case of SET, BER allows the nested TLVs to be appear in any order chosen by the encoder.
In DER, the elements are sorted by the tag of each element (which again are required to be
distinct).  However, if we have

        My-type ::= SET OF
                {field1  INTEGER,
                 field2  CHOICE
                   { flag  BOOLEAN,
                     dummy NULL} }

then each set-of value contains an integer value plus either a boolean or a null value.  But in the
sort into ascending order of tag, a boolean value would come before an integer value but a null
value after it.  Thus depending on which value of field2 is chosen, it may appear before or after the
value of field1!  In CER, a slightly more complicated algorithm applies which says that the
maximum tag that appears in any value of field2 is the NULL tag, and that that determines the
position of field 2 no matter what value is actually being sent.  This is marginally more difficult to
explain and perhaps understand, but avoids having to do a sort at encode time.

3.13  Handling of OPTIONAL and DEFAULT elements in sequence and set

There are no problems caused
by OPTIONAL (the use of tags
makes it unambiguous what has
been included and what has not).
However, in the case of
DEFAULT, BER leaves it as a
sender's option whether to omit
a default value (implying possibly complex checking that it is the default value), or whether to
encode it anyway!

Again, this gives DER and CER problems to remove this encoder's option.  In this case they both
require that an element whose value equals the default value be omitted, no matter how
complicated the check might be.  (However, in practice, DEFAULT is normally applied only to
elements that are very simple types, rarely to elements that are complex structured sequences and
sets).

When we discuss PER more fully in the next chapter, however, we find that PER specifies
mandatory omission for "simple types" (which it lists) and a sender's option otherwise, avoiding
verbosity in and options incommon cases, but avoiding implementation complexity in the other
cases.

3.14  Encoding OBJECT IDENTIFIER values

The value is basically a sequence of integers, but we need a more compact encoding than using
"SEQUENCE OF INTEGER".  The "more bit" concept comes in again here, but with a curious
(and nasty) optimization for the top two arcs.

The TLV approach was designed to make handlingThe TLV approach was designed to make handling
of OPTIONAL easy.  No surprises here.  Theof OPTIONAL easy.  No surprises here.  The
handling of DEFAULT again raises issues ofhandling of DEFAULT again raises issues of
encoder's options and problems inencoder's options and problems in
distinguished/canonical encoding rules.distinguished/canonical encoding rules.
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Figure III-12 is a repeat of Figure II-1, and shows a part of the object identifier tree.

Object identifier values are paths down this tree from the root to a leaf, and one such path is
defined by

                {iso(1) standard(0) 8571 abstract-syntax(2)}

but the only information that is encoded is a value of

                {1 0 8571 2}

This could in theory be carried by an encoding of "SEQUENCE OF INTEGER", but the presence
of T and L fields for each integer value makes this rather verbose, and a different (ad hoc)
encoding is specified.

The "more bit" concept (also used in the encoding of tags – see Figure III-6 in 2.2) is used.  For
each object identifier component (the values 1, 0, 8571 and 2 above), we encode it as a positive
integer value into the minimum necessary number of bits (the standard requires that the minimum
multiple of seven bits is used), then place those bits into octets using only the least significant
seven bits of each octet (most significant octet first).  Bit 8 (most significant) of the last octet is set
to 0, earlier bit 8 values (the "more" bit) are set to 1.

 itu-t (0)

iso (1)

joint-iso-itu-t (2)

internationalRA (23)

set (42)

set-vendors
(9)

oss (12)

Figure III-12:  A small part of the object identifier tree

standard (0)

8571

abstract-syntax (2)

identified-organisation (3)

dod (6)

internet (1)

Root
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The result of encoding

        ftam-oid OBJECT IDENTIFER ::= {1  0  8571  2}

 would be (in hex):

                T       L       V
ftam-oid:       06      05      01  00  C27B  02

However, the actual encoding of this object identifier value is

                T       L       V
                06      04      28 C27B 02

How come?

A dirty trick was played!  (And like most dirty tricks, it caused problems later).

The octets encoding the first two arcs were (in 1986) thought to be unlikely to ever have large
values, and that using two octets for these two arcs was "a bad thing".  So an "optimization"
(mandatory) was introduced.

We can take the top two arcs of Figure III-12 and "overlay" them with the dotted arcs shown in
Figure III-13, producing a single (pseudo) arc from the root to each second level node.  How to
number these pseudo-arcs?

Well, there are three top-level arcs, and we can accommodate encodings for up to 128 arcs (0 to
127) in a single octet with the "more bit" concept described above.  128 divided by 3 is about 40!
Let's assume the first two top-level arcs will never have more than 40 sub-arcs, and allocate the
first 40 pseudo-arcs to top-level arc 0, the next 40 to top-level arc 1, and the remainder to top-level
arc 2.

The assumption here is that there will never be more than 40 arcs beneath top-level 0 (ccitt - as it
was in 1986) and 1 (iso), but that there could be more beneath top-level 2 (joint-iso-ccitt), in which
case a multi-octet representation for the pseudo-arc would be needed.

 itu-t (0)

iso (1)

joint-iso-itu-t (2)

Figure III-13:  Making the top two arcs into a single arc

Root

. . . . . . . . .
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So for any second level arc beneath top-level arc 0, we use the second level arc number as the
number for the pseudo-arc.  For any second-level arc beneath top-level arc 1, we use the second
level arc number plus 40 as the number for the pseudo-arc, and for any second-level arc beneath
top-level arc 2, we use the second level arc number plus 80 as the number for the pseudo-arc.

We then get the encoding of  {1 0 8571 2} as

                T       L       V
                06      04      28 C27B 02

as described earlier.

As was pointed out earlier, where you are "hung" on the object identifier tree is unimportant,
except that your object identifiers will be longer the lower down you are.  In mid-1995 this
surfaced as an issue, with other major international players wanting top-level arcs.  The above
"fudge" with the top two arcs makes it difficult (not impossible, but difficult) to add new top-level
arcs, and to alleviate this problem the RELATIVE OID constructor was proposed for addition to
ASN.1.

If an organization has the need to allocate object identifiers beneath a root such as:

        {joint-iso-itu-t(2)  internationalRA(2) set(42)}

and has a protocol that is specifically designed to carry (always or commonly) object identifier
values beneath this root, then it can define

                SET-OIDs ::= RELATIVE OID
-- Relative to{2  2  42}

and use that type in its protocol, either alone or as a CHOICE of that and a normal OBJECT
IDENTIFIER.

A relative object identifier type is only capable of carrying object identifier values that hang below
a known node (in this case {2 2 42}), but the encoding of the value encodes only the object
identifier components after {2 2 42}, saving in this case two octets.

The saving can be more significant in PER, where encodings are generally smaller anyway.  In the
case of Secure Electronic Transactions (SET), getting ASN.1 encodings of certificates down to a
size that will fit easily on a smart card posed some challenges, and the use of PER and the relative
object identifier technique was important.

At the time of going to press, the RELATIVE OID work was not finalised, so do check details with
the latest standard! (And/or look for errata sheets for this book on the Web site in Appendix 5).

3.15  Encoding character string values

The character string types (as with the time
types described below) are encoded by
reference to other standards.  A more detailed
description of these character set standards is
included in Section IV, but the basic
characteristics of each encoding is described
here.

Here's where you have to go out andHere's where you have to go out and
buy additional specifications - almostbuy additional specifications - almost
all the character string encodings areall the character string encodings are
by reference to other specifications.by reference to other specifications.
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There is probably more text in this book than in the ASN.1 Standard itself!

Starting with the simplest character string types - NumericString, PrintableString, VisibleString,
and GraphicString - the contents octets of these are just the ASCII encoding of the characters.

The next group is TeletexString,  VideotexString, GraphicString and GeneralString.  These have
encodings whose structure is specified in ISO 2022, using "escape sequences" specified for each
Register Entry in the International Register to "designate and invoke" that register entry. After the
appropriate escape sequence, subsequent eight bit encodings reference characters from that register
entry until the next escape sequence occurs. It is important to note that there are many characters
that appear in multiple register entries, so there are frequently many encodings for a given
character string.  It is also theoretically possible to have a succession of escape sequences each one
over-riding the last, with no intervening character encoding.  In the distinguished/canonical
encoding rules, all these options are eliminated.

The next two character set types to consider are UniversalString and BMPString.  UniversalString
supports all the characters of ISO 10646 (the most recent character code standard, using 32 bits
per character in the encoding.  BMPString supports only those characters in the "Basic
Multilingual Plane" (sufficient for all normal earthly activity!) which also corresponds to the
"Unicode" character set, using 16 bits per character.

Finally, UTF8String uses a variable number of octets per character (from one for the ASCII
characters to a maximum of six octets).  None of the octets in a UTF8String encoding have the top
bit set to zero unless they are the (single octet) encoding of an ASCII character.  The encoding of
octets that form a single character always start with "10" unless they are the first octet of the
encoding of a character, so even if you start at a random point in the middle of an encoding, you
can easily identify the start of the next character encoding.

A UTF8 encoding of a character has an "initial octet" that either starts with a "0" bit (in which
case we have a single octet ASCII encoding), or starts with two to six one bits followed by a zero
bit.  Remaining bits in this first octet are available to identify the character.  The number of one
bits gives the number of octets being used to encode the character.  Each subsequent octet has the
top two bits set to "10", and the remaining six bits are available to identify the character.  The
character is identified by its number in the ISO 10646 32-bit coding scheme, which is  encoded
into the available bits (right justified), using the minimum number of octets necessary.  Thus
characters with values less than two to the power 11 (which is all "European" characters) will
encode into two octets, and characters with values less than two to the power 16 will encode into
three characters, and so on.

Some examples of UTF8 encodings of characters are given in Figure III-14 as hex representations.

Name of character     Unicode/10646 number   Encoding in binary

LATIN CAPITAL LETTER H                  72   01001000
LATIN DIGIT ZERO                        48   00110000
LATIN CAPITAL LETTER C WITH CEDILLA    199   11000011 10000111
GREEK CAPITAL LETTER BETA              914   11001110 10010010
CYRILLIC CAPITAL LETTER EN            1053   11010000 10011101
ARABIC LETTER BEHEH                   1664   11011010 10000000
KATAKANA LETTER KA                   12459   11100001 10100001 10101011

Figure III-14:  Some examples of UTF8 Encodings
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3.16  Encoding values of the time types

The time types are specified as strings of characters,
and their encoding is simply the ASCII encoding of
those characters.

There were problems with the precision of
GeneralizedTime.  The actual referenced standard is
ISO 3307, which from its first edition in 1975 permitted seconds to have any number of decimal
places.  But somehow some parts of the ASN.1 implementor community had got the impression
that the precision was limited to milliseconds, and would not accept values to a greater precision.

There are also issues with what is the precise set of abstract values. The ASN.1 specification
states that GeneralizedTime allows the representation of times to a variety of precisions.  So, for
example, is a time of:

                "199205201221.00Z"

the same abstract value as

                "199205201221.0Z"

If so, then the canonical and distinguished encoding rules should forbid one or the other encoding
(or even both!).  But if it is regarded that different precisions are different abstract values (and
may carry different semantics), then all such encodings need to be allowed in the canonical and
distinguished encoding rules.

The eventual ruling was that the implied precision by the inclusion of trailing zeros was not a
primary part of the abstract value, and that in the distinguished and canonical encoding rules
trailing zeros should be forbidden - a time to an implied precision of one hundredth of a second is
the same time (abstract value) as one to an implied precision of one tenth of a second, and should
not carry different semantics, and should have the same encoding in the distinguished and
canonical encoding rules.

4  Encodings for more complex constructions

4.1  Open types

ASN.1 has had the concept of "holes" from its
inception, originally described as a type called
"ANY", and later as a so-called "open type"
specified with syntax looking like:

        OPERATOR.&Type

stating that the type that will fill this field is the value of some ASN.1 type that is assigned to the
&Type field of an information object of the OPERATOR class (see Section II Chapter 6).

BER handles open types very simply:  What eventually fills this field has to be an ASN.1 type, and
the encoding of the field is simply the encoding of a value of that type.

Simply an ASCII encoding ofSimply an ASCII encoding of
the characters.  But watch outthe characters.  But watch out
for issues of precision in thefor issues of precision in the
distinguished/canonical rules.distinguished/canonical rules.

Most of the more complex types areMost of the more complex types are
defined as ASN.1 SEQUENCEdefined as ASN.1 SEQUENCE
types, and their values encode bytypes, and their values encode by
encoding values of those sequenceencoding values of those sequence
types.types.
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Remember that in BER there is a strict TLV structure, so it is always possible to find the end of a
BER TLV encoding without any knowledge of the actual type being encoded.  In the case of an
open type, the identification of that type may appear later in the encoding than the occurrence of
the encoding of a value of the type.  That gives no problem in BER, because the TLV structure is
independent of the type.

4.2  The embedded pdv type and the external type

As described in Section II, these are slightly obscure names for ASN.1 types, but the "embedded"
means that here we have foreign (non-ASN.1-defined) material embedded in an ASN.1 type, and
the "external" means more or less the same thing - material external to ASN.1 is being embedded.

Historically, EXTERNAL came first, and EMBEDDED PDV was added in 1994 with slightly
greater functionality (new specifications should always use EMBEDDED PDV, not EXTERNAL).

Both these types have "associated types" which are sequence types, and which have fields capable
of carrying all the semantics of the type.  Broadly, this is the encoding of some material (carried as
a bitstring in the most general case) and identification (using one object identifier in the case of
EXTERNAL and zero to two in the case of EMBEDDED PDV) of the abstract and transfer syntax
for the encoding in the bitstring.  (There is some slight additional complexity by the inclusion of
options that apply when the encodings are transferred over an OSI Presentation Layer protocol,
but this does not affect the encoding in the non-OSI case.)  The BER encoding is simply defined as
the encoding of these "associated types".

4.3  The INSTANCE OF type

The INSTANCE OF type provides a very simplified version of EXTERNAL or EMBEDDED
PDV, designed specifically for the case where what we want to put into our "hole" is a (single)
object identifier to identify the (ASN.1) type whose value is encoded into the "hole", followed by a
value of that ASN.1 type.  This type relates to the built-in very simple information object class
TYPE-IDENTIFIER described in section II.

It is encoded as a SEQUENCE type with just two fields - an object identifier and the value of an
ASN.1 type (as an open type).

4.4  The CHARACTER STRING type

The CHARACTER STRING type was introduced in 1994, and is almost identical to EMBEDDED
PDV in its encoding.  The idea here is that we have the value of a character string (from some
repertoire identified by a character abstract syntax object identifier) is encoded according to a
character transfer syntax object identifier.  Thus we have essentially an encoding of a sequence
comprising zero to two object identifiers (as with EMBEDDED PDV, there are options where
either or both object identifiers take fixed values determined by the protocol specification and
which therefore do not need to be encoded), followed by the encoding of the actual characters in
the string.
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5  Conclusion

The ASN.1 specification of BER is just 17
pages long - less than this chapter!  (Ignoring
the Annexes and details of DER and CER).
The interested reader should now have no
problems in understanding that specification.
Go away and read it!

Now you know all there is to knowNow you know all there is to know
about BER - just go and read theabout BER - just go and read the
specification and see!specification and see!
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Chapter 3
The Packed Encoding Rules

(Or: Encodings for the next millennium -

as good as you'll get – for now!)

Summary:  This chapter provides details of the Packed Encoding Rules.  It has broadly two main
parts.  In the first part further details are given of some of the global features of PER and the
terminology employed in the actual specification.  In this first part we cover:

• The overall structure of a PER encoding and the terminology used (preamble, length
determinant, contents), with discussion of the four variants of PER.

• The general nature of encodings for extensible types.

• PER-visible constraints.

• Effective size and alphabet constraints.

• Canonical order of tags, and the use of this ordering.

• The form of a general length field, when needed.

• The OPTIONAL bit-map and the CHOICE index (for extensible and non-extensible
choices)

The second part gives details of the encodings of each ASN.1 type in much the same way as was
done for BER in the previous chapter.  The order is again chosen in a way that moves from the
simpler to the slightly more complex encodings.  We cover the encodings of:

• NULL and BOOLEAN values.

• INTEGER values.

• ENUMERATED values.

• Length determinants of strings.

• Character string values.

• Encoding of SEQUENCE and SET.

• Encoding of SEQUENCE OF and SET OF.

• Encoding of REAL and OBJECT IDENTIFIER.
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• Encoding of the remaining types (GeneralizedTime, UTCTime, ObjectDescriptor, and types
defined using the "ValueSet" notation).

Most of these later topics are covered by simply giving examples, as they follow the general
approaches that are fully covered in the first part of this chapter.

1  Introduction

The principles underlying PER encodings (no encoding of tags,
use of a bit-map for OPTIONAL, use of a CHOICE index, and
the sorting of SET elements and CHOICE alternatives into tag
order have already been introduced in Chapter 1 of this section.
In this chapter we complete the detail.

The latter part of this chapter provides examples of all the encodings, and gives some further
explanation where needed.

This chapter is not totally free-standing.  It is assumed that the reader will have read the relevant
parts of Section III, Chapter 1 before starting on this chapter, but there are also a number of cases
where PER codings are the same as BER (or more usually CER/DER) encodings, and in such
cases reference is made to Section III, Chapter 2.

The bit-numbering and diagram convention (first octet of the encoding shown on the left, bits
numbered with 8 as the most significant and shown on the left) that was used for BER is used here
also.

However, with PER there are sometimes padding bits inserted to produce octet alignment at the
start of some field.  Where padding bits may have to be inserted (depending on the current bit
position within an octet, there may be anything from zero to seven padding bits), a capital "P" is
used at the start of the field in the examples given in this chapter.

2  Structure of a PER encoding

2.1  General form

You will already know that PER does not necessarily
encode into fields that are a multiple of eight bits, but the
BER concept of encodings of (for example) SEQUENCE,
being some up-front header followed by the complete
encodings of each element also applies to PER.

In the case of PER, the "header" is called the preamble,
but is present for SEQUENCE only if there are optional elements, otherwise it is null and we have
simply the encoding of each element.

There is also a difference in the "L" part of an encoding from BER. Once again, it can frequently
be missing (whenever the length is known in advance in fact), but also the terminology changes to

You have alreadyYou have already
learnt the principles oflearnt the principles of
PER encodings, nowPER encodings, now
for the details.for the details.

It sounds a bit like BER -It sounds a bit like BER -
preamble, length determinant,preamble, length determinant,
contents. But don't becontents. But don't be
misled.  A lot of the time allmisled.  A lot of the time all
we have is contents!we have is contents!
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"length determinant".  This change was made because whilst the length octets of BER are always a
count of octets (apart from the indefinite form), in PER the length determinant encodes a value that
may be:

• a count of octets (as in BER);  or

• a count of bits (used for the length of an unconstrained BIT STRING value);  or

• a count of iterations (used to determine the length of a SEQUENCE OF or SET OF
value).

It is also the case that in PER the length determinant is not necessarily an integral multiple of eight
bits.

The precise form and encoding of a length determinant is described later.

Each of the three pieces of encoding encode into what is called a bit-field.  The length of this bit-
field is either statically determinable from the type definition, or that part of the encoding will be
preceded by a length determinant encoding.  The term "bit-field" is used to imply that the field is
not necessarily an integral multiple of eight bits, nor in general is the field required to start on an
octet boundary.

As we proceed through the encoding of a value of a large and complex structured type, we generate
a succession of bit-fields.  At the end of the encoding, these are simply placed end-to-end (in
order), ignoring octet boundaries, to produce the complete encoding of the value.

2.2  Partial octet alignment and PER variants

There are a couple of further wrinkles on the overall
structure, of which this is the first!

There are some fields where the designers of PER felt that
it would be more sensible to ensure that the field started
on an octet boundary (for simplicity of implementation
and minimisation of CPU cycles).  Fields to which this
applies can be identified from the type definition (and do
not depend on the particular value being transmitted).
Such cases are said to encode into octet-aligned bit-
fields.  In the final concatenation of bit-fields, padding bits are inserted as necessary before any
octet-aligned bit-fields to ensure that they start at a multiple of eight bits from the start of the
entire encoding of the outer-level type - the message, or "protocol data unit" (PDU).

There are some applications (air traffic control is one), where the padding bits are not wanted -
minimising bandwidth is considered the primary need.  There are therefore formally two variants
of PER:

• the ALIGNED variant (with padding bits); and

• the UNALIGNED variant (with no padding bits, and with some other bandwidth reduction
features that will be described later).

Horses for courses!  TheHorses for courses!  The
ALIGNED variant of PERALIGNED variant of PER
makes pragmatic judgmentsmakes pragmatic judgments
on when to pad to an octeton when to pad to an octet
boundary for fields.  Theboundary for fields.  The
UNALIGNED version is forUNALIGNED version is for
those that say "bandwidth isthose that say "bandwidth is
all that matters"!all that matters"!
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2.3  Canonical encodings

This is another area that gives rise to further encoding rules within the general PER family.

Notice that whilst BER has many encoder's options, leading to the production of specifications for
CER and DER, PER avoids options in the basic encoding, and looks at first sight to be canonical.
(It is certainly far more canonical than BER!)

However, to produce truly canonical encodings (as with BER) requires a sort of SET OF elements,
and adds complexity to encoding character string types like GeneralString and GraphicString.  So-
called BASIC-PER (with both ALIGNED and UNALIGNED variants) does not do this, and
produces canonical encodings ONLY if these types are not involved.  CANONICAL-PER (with an
ALIGNED and an UNALIGNED variant) is fully canonical, and introduces sorting of SET-OF
and special rules for GeneralString etc.  The actual rules are exactly the same (and are specified
by reference) as those used to turn BER into CER.

2.4  The outer level complete encoding

Another slight complication arises at the outer
level of a complete encoding (the total message
being sent down the line).  (This is a pretty
detailed point, and unless you are heavily involved
in producing encodings you can skip to the next
clause).

There are a few theoretical cases where a message
may encode into zero bits with PER.  This would occur, for example, with an outer-level type of
NULL, or of a SET OF constrained to have zero iterations (both are highly unlikely to occur in
practice, but ...!).

The problem here is that if the way a carrier protocol is used allows multiple values of that type to
be placed into the carrier, a multiple of zero bits is still zero bits, and the receiver would not know
how many values had been sent, even with complete knowledge of the type definition!

So PER requires that if the complete encoding of the outer-level type is zero bits (which would
mean that the outer-level type contains only one abstract value), then a single one-bit is used for
that encoding instead.

And finally, recognising that carrier protocols often provide "buckets" that are only able to contain
multiples of eight bits, PER specifies that the complete encoding should always be padded at the
end with zero bits to produce an integral multiple of eight bits.  (Again, this is to ensure that there
is no doubt at the decoding end about the number of values that have been encoded into the octet
bucket that the carrier uses to convey the PER encoding from encoder to decoder).

BASIC-PER is largely canonical, but there are some types (SET OF, someBASIC-PER is largely canonical, but there are some types (SET OF, some
character string types, time types, and some occurrences of DEFAULT) wherecharacter string types, time types, and some occurrences of DEFAULT) where
being 100% canonical is "expensive".  So BASIC-PER (being pragmatic!)being 100% canonical is "expensive".  So BASIC-PER (being pragmatic!)
has non-canonical encodings for these types.  CANONICAL-PER is fullyhas non-canonical encodings for these types.  CANONICAL-PER is fully
canonical.canonical.

Unless you are a hand-encoder,Unless you are a hand-encoder,
skip this.  Suffice to say that allskip this.  Suffice to say that all
PER encodings of "outer-level"PER encodings of "outer-level"
types - complete messages - are atypes - complete messages - are a
multiple of eight bits, and at leastmultiple of eight bits, and at least
one octet long.one octet long.
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So the minimum size of a complete outer-level PER encoding is one octet, and it is always a
multiple of eight bits, but individual component parts are generally not a multiple of eight bits, and
may be zero bits.

3  Encoding values of extensible types

PER has a uniform approach to extensibility.  Refer in
what follows to Figure III-15 for an illustration of the
encoding of extensible INTEGER and string values, to
Figure III-16 for an illustration of the encoding of
extensible SET and SEQUENCE values, to Figure III-17
for an illustration of the encoding of extensible CHOICE
values, and to Figure III-18 for an illustration of the
encoding of extensible ENUMERATED values.

PER is consistent:  AnPER is consistent:  An
extensible type has one bitextensible type has one bit
up-front saying whether theup-front saying whether the
value being encoded is in thevalue being encoded is in the
root.  If so, it encodesroot.  If so, it encodes
"normally".  Otherwise, there"normally".  Otherwise, there
is a special encoding.is a special encoding.

Either:
                0
followed by:
                An encoding of a value of the type, which
                is the same as that for the type without
                an extensibility marker or extensions.
Or:
                1
followed by:
                An encoding for a value of the extensible type
                which is outside the root, which is the same as
                that for values of the unconstrained type.

Figure III-15:  Extensible constrained INTEGER or string encodings

Either:
                0
followed by:
                An encoding of a value of the type, which
                is the same as that for the type without
                an extensibility marker or extensions.
Or:
                1
followed by:
                An encoding as for 0, but with a special
                encoding for the extensions, inserted at
                the insertion point.

Figure III-16:  Extensible SET or SEQUENCE type encodings
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Any type (a constrained INTEGER, a constrained string, a SEQUENCE, a SET, a CHOICE, or an
ENUMERATED) that has an extensibility marker (the ellipsis) in its type definition or in a PER-
visible constraint has a value of that type encoded as follows:

• There is a one-bit-long bit-field encoded up-front - the extensions bit.

• The extensions bit is set to zero if the value being encoded is in the root (one of the original
INTEGER or ENUMERATED values, or a SET or SEQUENCE value in which all
extension additions - if any - are absent).

• The extensions bit is set to one otherwise (values outside the root).

NOTE — Only implementations of versions greater than 1 will set the bit to one, but all
implementations may encode a root value, and hence set the extensions bit to zero.

Either:
                0
followed by:
                An encoding of the choice index (identifying
                an alternative which is present in the
                root), which is the same as that for the
                type without an extensibility marker.
followed by:
                The encoding of a value of the chosen
                alternative within the root.
Or:
                1
followed by:
                A different encoding for the choice index,
                (identifying an alternative outside the root).
followed by:
                The encoding of a value of the chosen
                alternative that is outside the root.

Figure III-17: Extensible CHOICE encodings

Either:
                0
followed by:
                An encoding of a value of the type, which
                is the same as that for the type without
                an extensibility marker or extensions.
Or:
                1
followed by:
                An encoding for a value of the extensible
                type which is outside the root.

Figure III-18:  Extensible ENUMERATED type encodings
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• If the "extensions bit" is set to zero, what follows is exactly the same encoding (for all
types that can be marked extensible) as if the extension marker (and all extensions) was
absent.

If the "extensions bit" is set to one, the following encoding is sometimes the same as for the
unconstrained type, but sometimes different, as follows:

• If the "extensions bit" is set to one when encoding an extensible INTEGER or extensible
string, what follows is an encoding which is the same as for a value of the unconstrained
type.

• If the "extensions bit" is set to one when encoding a SEQUENCE or SET value, what
follows is the encoding of the elements that are in the root, with a special encoding (see
15.2) inserted at the insertion point to carry the values of elements outside the root (and to
identify their presence).

• If the "extensions bit" is set to one when encoding a CHOICE value, what follows is a
special encoding of the choice index (recognising that although theoretically unbounded,
the value will usually be small), followed by an encoding of the chosen alternative.  (See
8.2 for the encoding of a "normally small whole number").

• If the "extensions bit" is set to one when encoding an ENUMERATED value, the same
encoding is used as for the choice index, for again the value is theoretically unbounded, but
in practice will usually be small.

It will be seen from the above that the only cost in version 1 of including an extensibility marker is
1 bit (possibly causing the insertion of up to seven padding bits after it).  We will see later that if
the type actually has extensions, and values outside the root are encoded, we generally get an
additional overhead of a length field for such values.

The encoding for values of extensible types that lie outside the root is described below after the
description of the encoding for types that were not defined to be extensible (and for values of
extensible types that are within the root).

It will be clear from the above description that encoders and decoders must agree on whether a
type is extensible or not, and if so on precisely which abstract values are in the root.  Where a type
has an ellipsis as a direct part of the type definition - SET, SEQUENCE, CHOICE,
ENUMERATED, there is little problem.  But where a type such as integer or a character string is
constrained with a constraint that contains an ellipsis, the situation is (perhaps surprisingly!) not
so clear cut, and the type may well be declared to be not extensible for PER-encodings, despite the
clear presence of an ellipsis!  This area is discussed at the end of the discussion on PER-visible
constraints.

4  PER-visible constraints

4.1  The concept

Crucial to understanding PER encodings is the concept of PER-visible constraints.  These are
(subtype) constraints which, if present, affect the encoding of the parent type.
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The most important PER-visible constraints
are those placed on the INTEGER type and
on the lengths of strings (or on iteration
counts for SET OF and SEQUENCE OF).
There are also constraints on the alphabet of
some character string types that are PER-
visible (see Clause 6), and can reduce the
number of bits per character for these
character strings.

Constraints that are PER-visible in the above
cases are quite widely-defined.  They may be
applied "a bit at a time", through repeated
use of type references, or they may be
applied through the use of parameterisation.  Or they may be extremely complicated subtype
specifications involving included subtype constraints, intersections and unions.

There are two comments to make on this: first, most specifications are pretty simple, so hand-
coders don't have to do too much work to calculate the actual constraint in the real world;  second,
an ASN.1 compiler has no problems in resolving such expressions of arbitrary generality down to
a precise record of the permitted values for the integer type, the length of the string, etc.

4.2  The effect of variable parameters

One major exception to PER-visibility is if, in trying
to determine the actual constraint, a variable
parameter (a parameter that still does not have a
value when the abstract syntax is defined) is
textually referenced in the resolution of the actual
constraint, then the constraint ceases to be PER-
visible, and would encode as if that constraint were not present.

This is the first of several cases where a type which is formally extensible encodes as if it was not
extensible.   In this case, it contains an ellipsis in a constraint that is not PER-visible, so
(assuming no other constraints have been applied) it will encode as not extensible and not
constrained.

Variable parameters are still not heavily used, so this is not too big an issue, but the term textually
above refers to the possibility of constructing union and intersection expressions which appear to
use the value of such a parameter, but where the actual result of the expression evaluation proves
to be the same no matter what value the variable parameter might have.  Even if the parameter
does not affect the result, its textual presence kicks the constraint out of court.  This was done to
ease implementation efforts for compilers, and to avoid possible errors in hand-encoding.

PER-visible constraints arePER-visible constraints are
constraints that PER uses to produceconstraints that PER uses to produce
less verbose encodings - for example -less verbose encodings - for example -
INTEGER (0..7) encodes into justINTEGER (0..7) encodes into just
three bits because the (0..7) constraintthree bits because the (0..7) constraint
is PER-visible.  BER ignores allis PER-visible.  BER ignores all
constraints, and hence always needs aconstraints, and hence always needs a
length field.  PER takes a pragmaticlength field.  PER takes a pragmatic
view and uses constraints that areview and uses constraints that are
"easily" used and produce important"easily" used and produce important
bandwidth gains, but ignores other morebandwidth gains, but ignores other more
complex constraints.complex constraints.

Presence of a variable parameterPresence of a variable parameter
in a constraint means that PERin a constraint means that PER
totally ignores that entiretotally ignores that entire
constraint.constraint.
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4.3  Character strings with variable length encodings

Another major exception to PER-visibility that should be
noted is that a constraint on the length of a character
string applies to the number of (abstract) characters that
can appear in the string.  If the encoding is something
like UTF8 (or GeneralString), where the number of
octets needed to encode each character is different for
different characters (and in the case of GeneralString can
depend on encoder options), the length constraint is not much help at the encoding level - a length
field is still needed in order to find the end of the encoding.

(The above statement is not strictly true.  If the itty-gritty details of an encoding scheme such as
UTF8 are fully understood then knowledge of the number of abstract characters being encoded is
in fact sufficient to find the end of the encoding, but PER wants a decoder to be able to find the
end of the encoding without resorting to such detailed analysis.)

So character set types that have a fixed number of octets for each abstract character are called
known multiplier types, and length constraints on such types are PER-visible (and will give rise
to reduced or eliminated length encodings), but for character string types that are not "known
multiplier types", the constraints are not PER-visible (do not affect the encoding of values of the
type), and any extension markers in these constraints are ignored for the purpose of PER
encodings.

4.4  Now let's get complicated!

This book is called "ASN.1 Complete", so we had better
explore a bit more about PER-visibility and about
extensibility.

First, we note that there are a number of different sorts
of subtype constraint which may be used alone, but
which in the general case combine together using
EXCEPT, INTERSECTION, and UNION.  We call the
basic building blocks component constraints, and the
complete constraint the outer-level constraint.  Both
component constraints and outer-level constraints may contain an ellipsis!

Keeping it simple again -Keeping it simple again -
PER ignores lengthPER ignores length
constraints unless eachconstraints unless each
character encodes into thecharacter encodes into the
same number of bits.same number of bits.

Real specifications are rarelyReal specifications are rarely
complicated in the constraintscomplicated in the constraints
that they apply, butthat they apply, but
specifications of encoding rulesspecifications of encoding rules
have to consider all permittedhave to consider all permitted
syntax.  This section reallysyntax.  This section really
IS only for the intellectuallyIS only for the intellectually
curious!curious!
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Whether a component constraint is PER-visible will depend in general on the sort of component
constraint it is, and on the type being constrained. Figure III-19 gives a list.

Two important points to note from Figure III-19 are that a single value constraint is only visible if
applied to INTEGER,  and a contained subtype constraint is always visible.  This can give rise to
some distinctly non-obvious effects in relation to known-multiplier character string types such as
IA5String!   Suppose we have:

        Subtype ::= IA5String ("abcd" UNION "abc" UNION SIZE(2))
        MyString ::= IA5String (Subtype INTERSECTION SIZE(3))

In Mystring, all the component constraints are PER-visible, and we expect to be able to work out
the outer-level constraint.  In Subtype, the first two component constraints are not PER-visible but
the third is.  What is the effect on Subtype and on MyString?  This question, and a number of
related ones, produced some lengthy discussion within the ASN.1 group with "keep it simple"
colliding to some extent with "keep it general and intuitive".

The first important rule is that if any component
constraint is not PER-visible, then the entire outer-
level constraint is declared to be not PER-visible, and
will not affect the encoding.  Notice here that if there
is an ellipsis in either a component or in the outer-
level constraint, because we are ignoring the entire
constraint, the type is NOT encoded as an extensible type.  So Subtype above is treated by PER as
unconstrained, and contributes all abstract values of an unconstrained IA5String in the set
arithmetic for MyString.

For MyString, all component constraints are PER-visible, so the SIZE(3) applies, and values of
the string encode as if it contained all possible abstract values of length 3.

There is one additional rule, related to the use of the ellipsis.  When performing set arithmetic to
determine whether a PER-encoding is extensible and what values are in the root, all ellipsis marks
(and any actual additions) in a component constraint (or any of the component constraints of that
component - such as Subtype above) are ignored.  A constrained type is extensible for PER-
encodings if and only if an ellipsis appears at the outer-level of a constraint, all of whose

     Variable constraint             Never visible

     Single value constraint         Visible for INTEGER only

     Contained subtype constraint    Always visible

     Value range                     Visible for INTEGER only
                                     and in an alphabet constraint
                                     on a known-multiplier character
                                     string type

     Size constraint                 Visible for OCTET STRING, SET and
                                     SEQUENCE OF, and known-multiplier
                                     character string types

     Permitted alphabet              Visible for known-multiplier
                                     character string types

     Inner subtyping                 Never visible

Figure III-19:  PER-visibility of constraints

An outer-level constraint is onlyAn outer-level constraint is only
PER-visible if all of itsPER-visible if all of its
component constraints are PER-component constraints are PER-
visible.visible.
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component constraints are PER-visible.  This is simple, but perhaps not quite what you might have
expected.

Now consider a Version 2 specification, where the
constraint in Version 1 was PER-visible, but in
Version 2 things (such as a single value constraint) are
added that would normally wreck PER-visibility.  This
does not (and cannot be allowed to) affect PER-
visibility of the original Version 1 constraint,
otherwise interworking would be prejudiced.  So it is only those parts of a constraint that appear in
the root that affect PER-visibility (and that affect the way a value is encoded).

But as someone once said "Such contorted constraint specifications only ever appear in discussions
within the ASN.1 group, never in real user specifications."  And they are right!

5  Encoding INTEGERs - preparatory discussion

What matters for a PER-encoding of the INTEGER type (and of the lengths of known-multiplier
character strings) is not the actual values, but the range
of values permitted by PER-visible constraints.  It is the
largest and smallest value that matter.  An integer
constrained to have only the two values 0 and 7 will still
encode in three bits, not two.  What matters is the
range, not the number of values.

Figure III-20 illustrates some simple constraints that are PER-visible, and the values that PER
assumes need encoding.

For any integer that has a lower bound (and similarly for the lengths of strings), what is encoded in
the PER encoding is the offset from the lower bound. So the encoding of values of SET3 in Figure
III-20 would use just 2 bits.

When we look at the encoding of integers (and of the lengths of strings) we will see that there are
three distinct cases:

A constrained type is onlyA constrained type is only
extensible for PER-encoding ifextensible for PER-encoding if
the ellipsis appears at thethe ellipsis appears at the
outer-level of the constraint.outer-level of the constraint.

It's the largest and smallestIt's the largest and smallest
values that matter.  Gaps invalues that matter.  Gaps in
between do not affect thebetween do not affect the
encoding.encoding.

     Type definition         Values assumed to need encoding

        INTEGER (0..7)                                   0 to 7

        INTEGER (0 UNION 7)                              0 to 7

        SET1 ::= INTEGER (15..31)                       15 to 31
        SET2 ::= INTEGER (0..18)                         0 to 18
        SET3 ::= INTEGER (SET1 INTERSECTION SET2)       15 to 18

        SET (SIZE (0..3)) OF INTEGER    Iteration count: 0 to 3

        INTEGER (1 UNION 3 UNION 5 UNION 7)              1 to 7

Figure III-20:  Values assumed to need encoding
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• We have a finite upper and lower bound (called a constrained value);

• We have a finite lower bound, but no upper bound (called a semi-constrained value);

• We do not have a lower bound (this cannot occur for the length of strings, as zero is
always a lower bound);  this is called an unconstrained value; (even if there is a defined
upper bound! - the upper bound gets ignored in this case).

We describe below the encoding of constrained, semi-constrained, and unconstrained integers, and
of constrained and semi-constrained lengths of strings in subsequent text, also addressing any
special encodings that arise in the case of an extensible type.  In the case of a constrained integer
(or length), there are several different encodings depending on the range permitted by the
constraint.  (Remember that the absolute values permitted do not matter).

The reader may wonder whether it is worth bothering with using "range" (and offset from the lower
bound), rather than just determining the coding based on whether negative values are allowed or
not, and then using enough bits to handle the largest value permitted by the constraint.  Certainly
INTEGER (10..13) and INTEGER (-3..0) are not likely to occur in the real world!  But INTEGER
(1..4) may be more common, and will use just two bits with the "offset from lower bound" rule,
rather than three if we encoded the actual values.

Working with "offset from lower bound" may appear to be an additional complexity, but is actually
simpler than a specification saying "First see if all allowed values are positive or not, then etc etc",
and amounts to just a couple of orders in a couple of places in actual implementations.

6  Effective size and alphabet constraints.

6.1  Statement of the problem

We mentioned above (but did not emphasise) that constraints such as:

   MyString ::= PrintableString (FROM ( ("0" .."9")
                                        UNION ("#")
                                        UNION ("*") ) )

are PER-visible, and would result in just four bits per character for the encoding of values of
"MyString" (which consists of all strings that contain only zero to nine and hash and star - twelve
characters).

This is described more fully in the discussion of the encoding of character string values in clause
14, but note here that for alphabet constraints, what matters is the actual number of characters
permitted, not the range of characters.  This is different from the treatment of constrained integers,
as the need to define a character string type with an almost random selection of characters being
permitted is far more likely to arise than the need to define an integer type with a random selection
of integer values.

There is, however, a slightly difficult interaction between alphabet constraints such as that above
and length (size) constraints which can also be applied.

For example, consider
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        MyString1 ::= IA5String (FROM ("01") INTERSECTION SIZE (4) )
        MyString2 ::= IA5String (FROM ("TF") INTERSECTION SIZE (6) )
        MyString3 ::= IA5String (Mystring1 UNION Mystring2)

All constraints are PER-visible, and it is clear that MyString 1 has a fixed length of 4 characters
so should encode without a length field, and contains only two characters "0" and "1", and should
encode with just one bit per character.  Similarly MyString2 has an alphabet constraint restricting
its character set to "T" and "F" (again giving one bit per character), and a size constraint of 6.

But what is the alphabet and size constraint on MyString3?  Does it have them?  This is where the
concept of an effective size constraint and an effective alphabet constraint comes in.

6.2  Effective size constraint

An "effective size constraint" is defined to be a single size constraint such that a length is
permitted by that size constraint if and only if there is at least one abstract value in the constrained
type that has that length.

So in the earlier example, MyString3 has abstract values of length 4 and 6 only.  But what matters
is the range of a size constraint, which is 4 to 6.  This is equivalent to 0 to 2 when we remove the
lower bound, so the length field of MyString3 would encode with 2 bits.

6.3  Effective alphabet constraint

In an exactly equivalent fashion, an "effective alphabet constraint" is defined to be a single
permitted alphabet constraint such that a character is permitted by that alphabet constraint if and
only if there is at least one abstract value in the constrained type that contains somewhere within it
that character.

So in the earlier example, all the characters "0", "1", "T" and "F" are used by at least one abstract
value, and the effective alphabet constraint allows these (and only these) characters, so two bits
will be used per character.

It is normally a simple matter for both a human and a computer to work out the effective alphabet
and effective size constraints in every case, provided the rules on what is PER-visible are
understood and applied.

This is particularly true for a human because constraints are in practice quite simple.  For a
computer (which in an ASN.1 tool needs to be programmed to handle all possible constraints, no
matter how complex or way-out), a program can be written which can take any arbitrarily complex
set arithmetic expression (using only size and alphabet constraints)  and resolve it down to an
effective alphabet and an effective size constraint.  It does this using equalities like:

        A EXCEPT B      equals          A INTERSECTION (NOT B)
and
        NOT (A UNION B)  equals  (NOT A) INTERSECTION (NOT B)
etc

If single value constraints had been allowed on character string types, this would have been a much
more difficult task.
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7  Canonical order of tags

The reader will recall that PER requires a choice index,
which means numbering the alternatives in a CHOICE
in some order. Similarly, it avoids the need to encode a
tag with elements of a SET by determining a fixed
order for transmission of values of those elements.

It would have been possible to have used the textual
order of the alternatives and elements for this purpose,
but this was felt to be inappropriate, as any change in
the textual order (perhaps in going from version 1 to version 2, for purely editorial reasons) would
change the encoding on the line.  Essentially, such a change of order would have to be forbidden,
which was felt to be counter-intuitive.

As all alternatives in a CHOICE and all elements in a SET are already required to have distinct
(outer-level) tags, there is an obvious alternative available to that of using textual order:  define an
order for tag values, and then effectively re-order CHOICE and SET into tag order before
determining the choice index or the order of transmission for SET elements.  This is what is done.

The so-called canonical tag order is defined to be:

        Universal Class (first)
        Application Class
        Context-specific Class
        Private Class (last)

with lower tag numbers coming before higher ones within each class.

There is just one small complication - there always is!  Recall that most types have the same outer-
level tag for all their abstract values, and we can validly talk about the "tag of the type".  The only
case where this is not true is for an untagged choice type.   In this case different abstractvalues
may have different outer level tags, and we cannot talk about "the tag of the type" so easily.  (But
remember that all these tags are required to be distinct from any of the tags of any other type in a
SET or CHOICE).  PER defines the tag of an untagged choice type as the smallest tag of any of
its values, for the purpose of putting types into a canonical order, and the problem is solved.

8  Encoding an unbounded count

If constraints are placed on lengths, iteration counts,  or sizes
of integers, PER will often omit the length field completely, or
will use a highly optimised encoding for the length (described
later), otherwise it will use length encodings similar to (but
different from) those of BER.  It is these encodings that are
described in this clause.

We define an ordering of tagsWe define an ordering of tags
that lets us place any collectionthat lets us place any collection
of types with distinct outer-of types with distinct outer-
level tags into an order knownlevel tags into an order known
by both encoder and decoder,by both encoder and decoder,
and use that order for encodingand use that order for encoding
choices and sets.choices and sets.

At last we are doneAt last we are done
with the concepts, andwith the concepts, and
can look at actualcan look at actual
encodings!encodings!
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8.1  The three forms of length encoding

PER has an equivalent of the BER short and long definite
length and indefinite length forms, but there are a number
of important differences, and apart from the short definite
form the encodings are not the same as BER.

This clause describes the form used for length determinants in cases where a count is needed which
is potentially unbounded.  This is generally the case only when there are no PER-visible
constraints on the length of strings, iteration counts of SEQUENCE OF and SET OF, or on the
size of integers.

Where there are such constraints, PER will have a much more optimised length field (described
later), or no length field at all.

The first important difference from BER is in what PER counts.  (BER always counts the number
of octets in the contents).  PER counts the number of bits in a BIT STRING value, abstract
characters in a known-multiplier character string values, the iteration count in a SEQUENCE OF
or SET OF, and octets in all other cases.  We talk about the count in the length determinant.

Quite similar to the BERQuite similar to the BER
approach, but different and aapproach, but different and a
bit less verbose.bit less verbose.

 8    7    6    5    4    3    2    1

Figure III-21:  The single octet encoding of a count (counts up to 127)

0 Count

(octet-aligned)
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Figure III-21 to III-23 illustrate the three forms of encoding for the length determinant.

In the first form (corresponding to the BER short form, although PER does not use this term), we
have the same encoding as BER, with the encoding placed in an octet-aligned-bit-field (in other
words, there will be padding bits in the ALIGNED variants).  The top bit of the octet is set to zero,
and the remainder of the octet encodes count values from zero to 127.

In the second form (corresponding roughly to the BER long definite form), there are always
exactly two octets of length determinant.  The first octet has the first bit set to 1 and the second bit
set to zero, and the remaining 14 bits of those two octets encode count values from 128 to 16K-1.

Figure III-22:  The two octet encoding of a count (counts up to 16K-1)

 8    7    6    5    4    3    2    1

1 Count (top 6 bits)0

Count (bottom 8 bits)
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The third form (corresponding roughly to the BER indefinite form, but with a very different
mechanism) has an initial octet with both the top two bits set to 1.  The remaining six bits encode
(right justified) the values 1 to 4 - call this value "m".  This octet says two things:

• It says that "m" times 16K bits, iterations, abstract characters, or octets of the contents
follow.

• It says that after this fragment of the contents, there will be a further length field (of either
of the three forms) for the rest of the contents, or for another fragment.

PER requires that each fragment should be as large as possible, so there are no encoder's options
in the choice of "m".  Notice that in principle the largest permitted "m" could have been made
much greater (there are six bits available to encode it), but the designers of PER chose to enforce
fragmentation into fragments of at most 64K (4 times 16K) items for long octet strings etc.

Figure III-24 illustrates the encoding (in binary) for count values (for example for a SEQUENCE
OF) of 5, 130, 16000, 32768, and 99000.  The insertion of one or more padding bits is shown with
a "P", the length determinant is prefixed with "L:", and fragments of content with "C:" (a
convention used throughout this chapter).

Figure III-23:  The encoding for large counts

 8    7    6    5    4    3    2    1

1 Fragment size (1 to 4)1

A further length determinant
of any form

A fragment of 16K,
32K, 48K, or 64K

items.
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Note that where we get fragmentation in Figure III-24, although the fragments will be encoding
multiples of 16K values of the same type, the encodings for each value are not necessarily the
same length if the type being iterated has extensions, so padding bits may again be required before
the length determinant after a fragment, as all these length determinants are specified as octet-
aligned.

8.2  Encoding "normally small" values

PER has one further encoding for counts that are potentially
unbounded.  This encoding is used in cases where, although there
is no upper-bound on the values which may need to be encoded,
the values are expected to be "normally small" (and are all zero
or positive), so this is described as "encoding a normally small non-negative whole number".

This case is applied to encode a choice index for a choice alternative that is not in the root - there
could be millions of additional choices in Version 2, and a Version 1 system has no idea how many,
but actually, there are unlikely to be more than a few.

A second application is to encode values of an enumerated type that are outside the root, where
again the possible values are unbounded but are usually going to be small.

In both these cases, encoding the value as an unbounded integer value (which would require an
octet-aligned length field - usually set to 1 - as above and an integer encoding of one octet) is not
optimal.  The specified encoding in this case is instead to use just seven bits (not octet-aligned),
with the top bit set to zero and the other six encoding values up to 63.  Thus we avoid the octet
alignment, and use only seven bits, not sixteen.  Why use seven bits and not eight?  Remember that
this encoding will frequently appear following an extensions bit, so the two together give us
exactly eight bits and if we had alignment at the start, we still have it.

Of course, there is a penalty in optimising for small values!  If the normally small non-negative
whole number actually turns out to be more than 63, then we add a one-bit bit-field set to one,
followed by a positive integer encoding into minimum octets preceded by a general length field as
described above.

          5:    L:P00000101 C:(5 items of content)
        130:    L:P10000000 10000010 C:(130 items of content)
      16000:    L:P10111110 10000000 C:(16000 items of content)
      32768:    L:P11000010
                C:(32K items of content)
                L:P00000000
      99000:    L:P11000100
                C:(64K items of content)
                L:P11000010
                C:(32K items of content)
                L:P10000010 10111000
                C:(696 items of content)

Figure III-24:  Encoding various iteration counts

Unbounded, yes, butUnbounded, yes, but
usually small - PERusually small - PER
optimises.optimises.
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Figure III-25 illustrates the encoding of a count as a normally small non-negative whole number
for values of 5, 60, 254, and 99000. (There is no way the latter will occur in any real
specification, and a tool that failed to provide code for this case - simply saying "not supported" -
would be very unlikely to be caught out!  The specification is, however, complete, and will encode
any value no matter how large.)  Note the absence of padding bits in the first two cases.

8.3  Comments on encodings of unbounded counts

The fragmentation mechanism in PER is not reliant on nested
TLV structures, and can be applied to any contents encoding,
and in particular to encodings of unbounded integers.  Because
the number of 64K fragments is unlimited, PER can truly
encode indefinitely large integers, but we have already seen that
the actual limit BER imposes is for all practical purposes
irrelevant.  The fragmentation mechanism of PER, particularly the lack of encoder's options, is,
however, probably simpler than that of BER.

The main advantage of the PER encoding over BER is that length fields will generally be two
octets, and counts of less than 128 are required to be done using the short form.  With BER,
length fields of three octets (long definite form) are permitted (and some implementations use them
always), even for a contents length of - say - five octets.  This is a big verbosity overhead for such
implementations.

The main advantage of the encoding of normally small non-negative whole numbers is that they
(usually) encode into a bit-field without padding bits.  If the value gets too big (unlikely to occur in
practice), there is still only an additional penalty of one bit over a general length encoding.

9  Encoding the OPTIONAL bit-map and the CHOICE index.

9.1  The OPTIONAL bit-map

We already know that when encoding a sequence or
set value, PER encodes a preamble into a bit-field,

         5      L:0000101 C:(5 items of content)
        60      L:0111100 C:(60 items of content)
       254      L:1 P00000001 11111110 C:(254 items of content)
     99000:     L:1 P11000100
                C:(64K items of content)
                L:P11000010
                C:(32K items of content)
                L:P10000010 10111000
                C:(696 items of content)

Figure III-25:  Encoding normally-small non-negative whole numbers

Does it all matter?  IsDoes it all matter?  Is
BER simpler (or justBER simpler (or just
more familiar)?  Youmore familiar)?  You
must judge!must judge!

These are the last of ourThese are the last of our
"generic" encodings.  After this"generic" encodings.  After this
clause we deal with the completeclause we deal with the complete
encoding of specific types.encoding of specific types.
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with one bit for each OPTIONAL or DEFAULT element (zero bits if there are no OPTIONAL or
DEFAULT elements).  The bit is set to one if a value of the element is present in the encoding, set
to zero otherwise.  The encoding of each element then follows.

This applies to elements in the root.  A similar bit-map is used at the insertion point for elements
which are extension additions, but this is described later.

Under normal circumstances, there is no length determinant for this bit-map (as both sender and
receiver know its length from the type definition), but if (and it will never occur, so a "not
supported" response from a tool would be OK!) the length of the bit-map (the number of optional
or default elements) exceeds 64K, then a length determinant is included and the bit-map fragments
into 64K fragments.

9.2  The CHOICE index

For a CHOICE value, there is again a preamble.  If the type is not extensible, or the value is in the
root, we have an upper bound on this choice index (and a lower bound of zero - the choice index
starts at zero with the alternative that has the lowest tag value, as described earlier).  This value is
encoded as a constrained integer value - one that has both an upper and a lower bound.  We will
see below that integer values that are constrained to a range of, say,  0 to 15 (up to 16 alternatives
in the CHOICE type) encode into a bit-field of four bits.

If the chosen alternative is outside of the root, then we get our "extensions bit" set to one in a bit-
field (as described earlier), followed by (usually) seven bits in a bit-field encoding the normally
small non-negative whole number which is the index of the alternative within the extension
additions (taking the first addition alternative as value zero).  Note that whilst version brackets are
allowed in a CHOICE, their presence makes no difference to the encoding, it is only for
SEQUENCE and SET that the encoding is affected.

Notice that if we started on an octet boundary, we have added exactly eight bits and will remain on
an octet boundary, and we have not forced any octet alignment in these encodings.  Illustrations of
these encodings are given in Clause 16 describing the complete encoding of choice values.

10  Encoding NULL and BOOLEAN values.

These are easy.  No PER-visible constraints can apply, and optionality
is sorted by the bit-map.

Zero bits for NULL.  That's all you need.  One bit for BOOLEAN - set to 1 for TRUE and set to
zero for FALSE.  And of course there are no padding bits in the ALIGNED version.

11  Encoding INTEGER values.

Remember - when we talk about constraints below, we are only concerned with PER-visible
constraints as discussed earlier.

At last!  How doAt last!  How do
we actuallywe actually
encode something?encode something?
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11.1  Unconstrained integer types

The most important thing with the encoding of
INTEGER types is whether a lower bound on the
value exists or not.  If it doesn't, we encode into
the minimum octets as a signed number,  with a
general length determinant (as described earlier)
containing a count of the number of octets.  So:

                integer1 INTEGER ::= 4096
                integer2 INTEGER (MIN .. 65535) ::= 127
                integer3 INTEGER (MIN .. 65535) ::= -128
                integer4 INTEGER (MIN .. 65535) ::= 128

are all described as "unconstrained" and encode as (with "L:" preceding the length determinant - if
any - and "C:" preceding the contents encoding - if any):

        integer1:       L:P00000010  C:00010000 00000000
        integer2:       L:P00000001  C:01111111
        integer3:       L:P00000001  C:10000000
        integer4:       L:P00000010  C:00000000 10000000

This is the same as BER (for values up to 127 octets), but without the identifier octets.
Remember that in the UNALIGNED variant P bits are never inserted.

11.2  Semi-constrained integer types

Once we have a lower bound (which will typically be zero or one,
but could be anything) then we only need to encode a positive
value, using the offset from the base as the value to be encoded.

As for unconstrained integer types, the encoding is into the minimum necessary multiple of eight
bits preceded by a length determinant counting the number of octets.  So:

                integer5 INTEGER (-1.. MAX) ::= 4096
                integer6 INTEGER (1 .. MAX) ::= 127
                integer7 INTEGER (0 .. MAX) ::= 128

encode as:

        Integer5:       L:P00000010  C:00010000 00000001
        Integer6:       L:P00000001  C:01111110
        Integer7:       L:P00000001  C:10000000

(Compare the encoding of integer7 with that of integer4.)

The only interesting parts of this discussion are to do with encodingThe only interesting parts of this discussion are to do with encoding
constrained integers, when "minimum bits" tend to be used.  For unconstrainedconstrained integers, when "minimum bits" tend to be used.  For unconstrained
integers, we get the standard length determinant and an encoding in theintegers, we get the standard length determinant and an encoding in the
minimum octets.  There are, however, differences between the ALIGNED andminimum octets.  There are, however, differences between the ALIGNED and
UNALIGNED variants (apart from adding or not adding padding bits).UNALIGNED variants (apart from adding or not adding padding bits).

If there is no lower bound, we get aIf there is no lower bound, we get a
2's-complement encoding into2's-complement encoding into
minimum octets with a generalminimum octets with a general
length determinant (all variants).length determinant (all variants).

Encode the (positive)Encode the (positive)
offset from the loweroffset from the lower
bound.bound.
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11.3  Constrained integer types

It is in the encoding of integers with both a lower and
an upper bound that PER tries hardest to "do the
sensible thing".  However, "the sensible thing" as
determined by the proponents of the UNALIGNED
variant turned out to be different from "the sensible
thing" as determined by the proponents of the
ALIGNED version, so the approaches are not quite the
same.  Which is the most sensible, you must judge!

The standard talks about the "range" of the values, defining the "range" as the upper-bound minus
the lower-bound plus 1.  So a constraint of (0..3) has a "range" of four.  Thus "range" is
essentially defined as the total number of values between (and including) the upper and lower
bounds.

If the "range" is one, then only one value is possible.  This is not likely to occur in practice, but the
encoding follows naturally from the treatment of larger ranges and is similar to the handling of
NULL:  there are no bits in the encoding!

We first describe all the cases that can arise, then we give examples.

For larger ranges, the UNALIGNED case is the easiest to describe.  It encodes the offset from the
lower bound into the minimum number of bits needed to support all values in the range.  So a
constraint of (1..3) - or (6..8) or (11..13) or (-2..0) - has a range of three, and values will encode
into a bit-field of 2 bits (as would a range of 4).  A constraint of (0..65535) will produce
encodings of all values into exactly 16 bits, and so on.  Remember that with the UNALIGNED
variants, there are never any padding bits, so in this last case successive integers in the encoding of
SEQUENCE OF INTEGER (0..65535) will all be 16 bits long, but may all be starting at bit 3
(say) of an octet.

The ALIGNED case is a bit more varied!

If the range is less than or equal to 255 (note: 255, not 256), then the encoding is into a bit-field
which is the minimum necessary to encode the range, and there will be no padding bits. If,
however, the range is 256 - for example, the constraint might be (0..255) or (1..256) - then the
value encodes into eight bits, but they go into an octet-aligned field - we get padding bits if
necessary.

If the range is greater than 256 but no greater than 64K, we get two octets (octet-aligned).

If we need to go over two octets (the range is more than 64K), we encode each value (as a positive
integer offset from the lower bound) into the minimum number of octets necessary (except that
zero always encodes into an octet of all zeros, not into zero bits, so we always have a minimum of
one octet), and prefix a length determinant giving the number of octets used.  In this case, however,
the general length determinant described earlier is not used!  Instead, we look at the range of
values that this octet count can take (lower bound one, remember, because zero encodes into one
octet), and encode the value of the length in the minimum number of bits needed to encode a
positive number with that range, offset from one.

Let's have some examples.  What follows is not correct value notation - for compactness of the
examples, we give a value, then a comma, then another value, etc, and use commas to separate the
encodings in the same way.

Differences between theDifferences between the
UNALIGNED variantsUNALIGNED variants
(minimum bits for the range)(minimum bits for the range)
and the ALIGNED version -and the ALIGNED version -
several different encodingsseveral different encodings
depending on the range.depending on the range.
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                integer8  INTEGER (3..6) ::= 3, 4, 5, 6
                integer9  INTEGER (4000..4254) ::= 4002, 4006
                integer10 INTEGER (4000..4255) ::= 4002, 4006
                integer11 INTEGER (0..32000) ::= 0, 31000
                integer12 INTEGER (1..65538) ::= 1, 257, 65538

will encode as follows:

        integer8        C:00, C:01,  C:10, C:11
        integer9        C:00000010,  C:00000110
        integer10       C:P00000010, C:P00000110
        integer11       C:P00000000 00000000, C:P01111001 00011000
        integer12  (UNALIGNED)  C:0 00000000 00000000,
                                C:0 00000001 00000000,
                                C:1 00000000 00000001
                   (ALIGNED)    L:00 C:P00000000,
                                L:01 C:P00000001 00000000,
                                L:10 C:P00000001 00000000 00000001

You will see that where there is no length determinant, the field is the same size for all values of
the type, and can be deduced from the type notation.  (If this were not true, PER would be a bust
specification!)  Where the field size varies, a length determinant is encoded so that the decoder
knows the size of the field, with the length of the length determinant the same for all values, and
again derivable from the type definition.  As stated earlier, these are necessary conditions for an
encoder and decoder to be able to interwork.  Study these examples!

There is one further (and final) case for encoding the ALIGNED variant of a constrained integer:
If the number of octets needed to encode the range of the integer value exceeds 64K .....  Need I
go on?  This will never ever arise in practice!  But if it did, then a general length encoding is used,
and the fragmentation procedures discussed earlier come into place.

11.4  And if the constraint on the integer is extensible?

There is nothing new or unexpected here.  The
principles of encoding extensible types have
been discussed already.

But let's have some examples:

integer13  INTEGER (MIN .. 65535, ..., 65536 .. 4294967296) ::= 127, 65536
integer14  INTEGER (-1..MAX, ..., -20..0 ) ::= 4096, -8
integer15  INTEGER (3..6, ..., 7, 8) ::= 3, 4, 5, 6, 7, 8
integer16  INTEGER (1..65538, ..., 65539) ::= 1, 257, 65538, 65539

will encode as (the "extensions bit" has "E:" placed before it for clarity):

It's just the usual one bit up-front,It's just the usual one bit up-front,
a constrained encoding if in the root,a constrained encoding if in the root,
and an unconstrained encodingand an unconstrained encoding
otherwise.otherwise.
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   integer13:       E:0 L:P00000001 C:01111111,
                    E:1 L:P00000011 C:00000001 00000000 00000000
   integer14:       E:0 L:P00000010 C:00010000 00000001,
                    E:1 L:P00000001 C:11111000
   integer15:       E:0 C:00, E:0 C:01, E:0 C:10, E:0 C:11,
                    E:1 L:P00000001 C:00000101,
                    E:1 L:P00000001 C:00001000
   integer16: (UNALIGNED)  E:0 0 00000000 00000000,
                           E:0 0 00000001 00000001,
                           E:0 1 00000000 00000001,
                           E:1 L:00000011 C:00000001 00000000 00000010
              (ALIGNED)    E:0 L:00 C:P00000000,
                           E:0 L:01 C:P00000001 00000000,
                           E:0 L:10 C:P00000001 00000000 00000001,
                           E:1 L:00000011 C:00000001 00000000 00000011

OK - Now you know it all!  It is not difficult, but there are a lot of cases to remember.  Come back
BER!  All the other types are much more straightforward!  No doubt you will want to write notes
on this lot, and hope that your examination is an Open Book examination!  But by now (if you got
this far!) you should certainly have a very good understanding of the principles involved in the
PER encodings.

12  Encoding ENUMERATED values.

First we consider the encoding of an enumerated type
that is not marked extensible (and remember, the
encoding of an extensible type for a value that is in
the root is just the same except that it is preceded by
an extensions bit set to zero).  Encoding of
enumerations outside of the root are covered later.

The numerical value associated with an enumeration
is always bounded above and below.  Moreover, it is
possible to order the enumerations into ascending
order (even if some have negative associated values),
and then to re-number each enumeration from zero
upwards.

This gives us a compact set of integer values (called the enumeration index) with a lower and an
upper bound.  Any value of the enumerated type now encodes like the corresponding constrained
integer.

In principle, all possible constrained integer encodings are possible, but in practice, definitions of
enumerated types never have more than a few tens of enumerations - usually much less, so we are
essentially encoding the enumeration index into a bit-field of size equal to the minimum necessary
to cope with the range of the index.

If the enumeration is extensible, then enumerations outside the root are again sorted by their
associated numerical value, and are given their own enumeration index starting at zero again.
(Remember, the extensions bit identifies whether an encoded value is a root one or not, so there is
no ambiguity, and starting again at zero keeps the index values as small as possible).  For a value
outside the root, the encoding is the encoding of the enumeration index as a "normally small non-
negative whole number" described earlier.

In BER, enumerated valuesIn BER, enumerated values
encode like integers, using theencode like integers, using the
associated numerical value givenassociated numerical value given
in the type definition, but inin the type definition, but in
PER they are known to bePER they are known to be
constrained, and normally haveconstrained, and normally have
small associated numericalsmall associated numerical
values, so the encoding isvalues, so the encoding is
different - and essentiallydifferent - and essentially
simpler!simpler!
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No doubt you want some examples!  Here goes (with a way-out example first!) - and again we use
commas to separate lists of values and of encodings, for brevity:

        enum1 ENUMERATED {red(-6), blue(20), green(-8)}
                ::=  red, blue, green
        enum2 ENUMERATED {red, blue, green, ..., yellow, purple}
                ::= red, yellow, purple

These encode as:

        enum1:  C:01, C:10, C:00
        enum2:  E:0 C:00,
                E:1 C:0000000, (These are the "normally small"
                E:1 C:0000001    encodings of zero and one.
                                 Note the absence of a "P")

If we had more than 63 extension additions .... No! I am not going to give an example for that.  It
won't happen!  Produce your own example! (You have been told enough to be able do it).

13  Encoding length determinants of strings etc

The "etc" in the heading of this clause refers to
iteration counts in SEQUENCE OF and SET
OF.

Remember that for iteration counts, the length
determinant encodes the number of iterations,
for the length of bitstrings it encodes the
number of bits, for the length of known-
multiplier character strings it encodes the
number of abstract characters, and for everything else it encodes the number of octets.

A length determinant can, however, have values which are constrained by an effective size
constraint, and in many ways we can view this as similar to the situation when an integer value (a
count) is constrained by a direct constraint on the integer.

Note that we are here talking only about lengths of strings or iteration counts - the form of the
length determinant for integer values has been fully dealt with (and illustrated) earlier.  We have
also discussed earlier the general case of a length determinant where there are no PER-visible size
constraints.  So in this clause we are talking only about the case where there is an effective size
constraint, and as in earlier clauses, we consider first the case of a constraint without an extension
marker (which also applies to encoding counts within the root if there is an extension marker).

The discussion of length encodings for strings etc has been deliberately delayed until after the
description of integer encodings was given, and the reader may like to review that description
before reading on.

A length or iteration count is basically an integer value, except that it is always bounded below (by
zero if no other lower bound is specified), so if we need to encode the lengths of strings, we can
draw on the concepts (and the text!) used to describe the encoding of values of the integer type.
For a semi-constrained count (no upper bound), it would be pointless to encode a semi-constrained

A length determinant which isA length determinant which is
constrained by an effective sizeconstrained by an effective size
constraint encodes in exactly the sameconstraint encodes in exactly the same
way that an integer with anway that an integer with an
equivalent constraint would encodeequivalent constraint would encode
(well, almost - read the details(well, almost - read the details
below if you wish!).below if you wish!).
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integer value (with its "length of length" encoding), and instead a general length determinant as
described in Clause 8 is encoded.

For a constrained count, where the count is restricted to a single value (a fixed length string, for
example, or a fixed number of iterations in a sequence-of), then there is no length determinant - we
simply encode the contents.  Otherwise, we need a length determinant.

For a constrained count, the count is encoded (in both the ALIGNED and UNALIGNED versions)
exactly like the encoding of a corresponding constrained integer, except where the maximum
allowed count exceeds 64K.  In this latter case the constraint is ignored for purposes of encoding,
and a general length determinant is used, with fragmentation into 64K hunks (as described in
Clause 8) if the actual value has more than 64K bits, octets, iterations, or abstract characters.

Finally, we need to consider an extensible constraint.  If the effective size constraint makes the
type extensible, then the general provisions for encoding extensible types discussed earlier apply to
the type as a whole - we don't encode an extensible integer for the length determinant. So we get
the extensions bit up-front saying whether the count (and any other aspect of the value, such as the
alphabet used) is in the root, and if so we encode the count according to the size constraint on the
root.  If not, then the extensions bit is set to one and a general length determinant is used.

So to summarise:

• With no PER-visible size constraint, or a constraint that allows counts in excess of 64K,
we encode a general length determinant.

• For abstract values outside the root, a general length determinant is again used.

• With a size constraint that gives a fixed value for the count, there is no length determinant
encoding.

• Otherwise, we encode the count exactly like an integer with the equivalent constraint.

We illustrate this with some IA5String examples, but remember that the same length determinant
encodings also apply to iteration counts etc. In the examples you will see "P" for padding bits in
the contents.   These are a consequence of the main type being IA5String with more than two
characters, and would not be present if we had used BIT STRING for the examples (or if we had
an IA5String whose length was restricted to at most two characters - see later).  Where padding
bits are shown in the length determinant, these would be present for all types.  We give the E: and
L: fields in binary, but the C: fields in hexadecimal, for brevity.

If the reader wants some exercise, then try writing down the encodings of each value before
reading the answers that follow!  (For very long strings, we indicate the contents with the count in
characters in brackets, and do the same when giving the encoding).

With the following value definitions:

        string1 IA5String (SIZE (6)) ::= "012345"
        string2 IA5String (SIZE (5..20)) ::= "0123456"
        string3 IA5String (SIZE (MIN..7)) ::= "abc"
        string4 IA5String ::= "ABCDEFGH"
        string5 IA5String (SIZE (0..7, ..., 8)) ::= "abc", "abcdefgh"
        string6 IA5String (SIZE (65534..65535)) ::= "(65534 chars)"
        string7 IA5String (SIZE (65537)) ::= "(65537 chars)"

we get the following encodings (using hex or binary as appropriate):
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        string1:  C:P303132333435
        string2:  L:0001 C:P30313233343536
        string3:  L:011  C:P616263
        string4:  L:P00001000 C:4142434445464748
        string5:  L:011  C:P616263,
                  L:P00001000 C:6162636465666768
        string6:  L:0 C:(65534 octets)
        string7:  L:P11000100 C:(65536 octets) L:P00000001 C:(1 octet)

14  Encoding character string values.

14.1  Bits per character

We have discussed above the encoding of the lengths
of strings.  To recap, the length determinant gives
the count of the number of abstract characters for
the "known multiplier" character string types, and of
octets for the other character string types.

In the case of the known multiplier character string
types, the number of bits used in the encoding of the
UNALIGNED variants of PER is the minimum
needed to represent each character unambiguously.  For the ALIGNED versions, the number of
bits for each character is rounded up to a power of two (one, two, four, eight, sixteen, etc), to
ensure that octet alignment is not lost between characters.

The known multiplier types, with the number of characters that the unconstrained type is defined to
contain (and the number you need to exclude to improve the encoding in the UNALIGNED
variants) are:

     Type name       Number of chars        Number of reductions
                                         needed for better encoding
    IA5String        128 characters                 64
    PrintableString   74 characters                 10
    VisibleString     95 characters                 31
    NumericString     11 characters                  3
    UniversalString   2**32 characters             2**31
    BMPString         2**16 characters             2**15

For all other character string types, the length determinant gives the count in octets, because the
number of octets used to represent each character can vary for different characters.  In this latter
case, constraints are not PER-visible, and the encoding of each character is that specified by the
base specification, is outside the scope of this chapter, and is the same as for BER.

All that remains is to discuss the encoding of each character in the known multiplier character
string types, as the encoding of these characters is affected by the effective alphabet constraint (see
Clause 6), and to see when octet-aligned fields are or are not used for character string encodings.
Again we see differences between the ALIGNED and the UNALIGNED variants, but the
encodings are what you would probably expect, or have invented yourself!

Each of the known multiplier characters string types has a canonical order defined for the
characters, based on the numerical value in the BER encoding (the ASCII value for IA5String,

Encoding of known multiplierEncoding of known multiplier
character strings uses thecharacter strings uses the
minimum number of bits for eachminimum number of bits for each
character, except that in thecharacter, except that in the
ALIGNED variants this numberALIGNED variants this number
is rounded up to a power of two,is rounded up to a power of two,
to avoid losing alignment.to avoid losing alignment.
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PrintableString, VisibleString, and NumericString, the UNICODE value for BMPString, and the
ISO 10646 32-bit value for characters outside the Basic Multi-lingual Plane for UniversalString).
These values are used to provide a canonical order of characters.  The values used to encode each
character are determined by assigning the value zero to the first abstract character permitted by the
effective alphabet constraint, one to the second, etc.  The last value used is n-1 if there are n
abstract characters permitted for the type (using only PER-visible constraints in this
determination).  There are a minimum number of bits needed to encode the value n-1 as a positive
integer, and in the UNALIGNED variants, this is exactly the number of bits used to encode each
character.  For example:

        Type definition                No of bits per char
My-chars1 ::= IA5String (FROM ("T"))            Zero
My-chars2 ::= IA5String (FROM ("TF"))           One
My-chars2 ::= UniversalString (FROM ("01"))     One
My-chars2 ::= NumericString (FROM ("01234567")  Three

Note that in the above, the actual base type being constrained could be any of the known-multiplier
character string types, and the result would actually be just the same encoding!  You effectively
design your own character set, and PER then assigns an efficient encoding for each character.

For the ALIGNED variants, the number of bits used is always rounded up to a power of two -
zero, one, two, four, eight, sixteen, thirty-two, to ensure that octet alignment is not lost within the
string.

There is one small exception to this mapping of values to new values for encoding.  The original
set of characters have associated values with some "holes" in the middle (in general).  If remapping
the original values to a compact range from zero to n-1 does not produce a reduction in the number
of bits per character in the PER encoding (for whichever variant is in use), then the remapping is
not done, and the original associated value is used in the encoding.  In practice, this means that
remapping is more likely for UNALIGNED PER than for ALIGNED PER (where the number of
bits per character is always a power of two), except in the case of NumericString, where the
presence of "space" means that for both variants (even with no constraints), remapping takes
place, reducing the encoding to a maximum of four bits per character.

So with:

        My-Boolean ::= IA5STRING (FROM ("TF"))(SIZE(1))

The encoding would be a single bit in a bit-field (with no length encoding) - in other words, it
would be identical to the encoding of a BOOLEAN!

14.2  Padding bits

When do we get padding bits in the ALIGNED case?
Here we need to look at the combination of the effective
size constraint (which restricts the number of abstract
characters in every value) and the effective alphabet
constraint (which determines the number of bits used to
encode each character).  If the combination of these is
such that the total encoding size for a value of this constrained type can never exceed sixteen bits,
then there are no padding bits.  The character string value is encoded into a bit-field.  If, however,
there are some values which might require more than 16 bits, then the encoding is into an octet-
aligned bit-field, and no character will cross an octet boundary (in the ALIGNED case).

No padding if the size isNo padding if the size is
constrained so that an encodedconstrained so that an encoded
string value never exceeds 16string value never exceeds 16
bits.bits.
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Some examples of character strings whose encodings do not produce padding bits:

                String1 ::=  NumericString (SIZE (0..4))
                String2 ::=  IA5String (FROM ("TF")) (SIZE (0..16))
                String3 ::=  IA5String (SIZE (0..2))
                String4 ::=  BMPString (SIZE (0..1))

Again, this rule of "16 bits" maximum is another example of PER being pragmatic.  The limit
could just as well have been set at 32, or 64 bits.  The philosophy is that for short strings we do
not want to force alignment, but that for long strings doing alignment at the start of the string (and
then maintaining it) is on balance the best decision.

14.3  Extensible character string types

The encoding of an extensible (by PER-visible
constraints) known-multiplier character string type
follows the normal pattern - an extensions bit set to
zero if in the root, one otherwise, then the optimised
encoding described above for root values, and an
encoding of the unconstrained type (with a general
length determinant) if we are not in the root.  (Note,
however, That mapping of associated values to produce a 4-bit encoding still occurs for an
unconstrained NumericString).

All the above applies only to the known-multiplier types.  For the other character string types,
there is never an extensions bit, the general encoding always applies for all values.

Finally, note that there is no concern in determining encodings of whether a known-multiplier type
is extensible for alphabet or for size constraints.  All that matters is whether or not PER-visible
constraints make it extensible, and what the effective alphabet and effective size constraints for the
root then are.  The encoding is totally determined by that.

15  Encoding SEQUENCE and SET values.

For a SEQUENCE without an extension marker,
earlier text (Clause 9) has described the encoding.
There is up-front a preamble (encoded as a bit-field,
not octet-aligned), with one bit for each element that
is OPTIONAL or DEFAULT, set to one if there is
an encoding present for a value of that element, to
zero otherwise.  Then there is simply the encoding
for each element.

We have also discussed earlier the use of tags to provide a canonical order for the elements of a
SET, which then encodes in exactly the same way as a SEQUENCE.

We are left in this clause to discuss when/whether values equal to a DEFAULT value are required
to be present, or required to be absent, or whether we have an encoder's option.  We also need to
discuss the way extension additions are encoded.

No surprises here:  an extensionsNo surprises here:  an extensions
bit, the optimised encoding if inbit, the optimised encoding if in
the root, the general encodingthe root, the general encoding
otherwise - but only for theotherwise - but only for the
known-multiplier typesknown-multiplier types

There is so little to say here -There is so little to say here -
you know it all already - whoops!you know it all already - whoops!
Not quite true - we need toNot quite true - we need to
discuss how the encoding ofdiscuss how the encoding of
extension additions is handled.extension additions is handled.
That is the only complicated part.That is the only complicated part.
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But first, let's have an example of encoding a value of a simple sequence type.  The example is
shown in Figure III-26 and the encoding in Figure III-27.  The OPTIONAL/DEFAULT bit-map is
preceded by "B:", contents by "C:", length determinant by "L:", and one or more padding bits by
"P", as in earlier examples.

It is worth noting that the total length of this PER encoding is seven octets.  In BER (assuming the
encoder takes the option of encoding default values and always using a 3-octet definite length field,
both on the grounds of simplicity), we get a total of 24 octets.  If the encoder is more bandwidth
conscious and omits the encoding of the default value and uses short definite lengths (which suffice
in this case), BER will produce 13 octets.

15.1  Encoding DEFAULT values

Here we find some differences between CANONICAL-PER (which is fully canonical), and
BASIC-PER (which has encoder's options in complex cases that rarely arise).

For both encoding rules, if the actual value to be encoded equals the default value for "simple
types" (defined as anything that is not a SET, SEQUENCE, SET OF, SEQUENCE OF, CHOICE,
EMBEDDED PDV, EXTERNAL or unrestricted character string type, then the encoder is
required to omit the encoding in both CANONICAL-PER and in BASIC-PER (both are
canonical).

However, for the types listed above, CANONICAL-PER again requires omission if the value
equals the default value, but BASIC-PER leave it as an encoder's option, making it unnecessary to
do a possibly complex run-time check for equality of a value with the DEFAULT value.

15.2  Encoding extension additions

The general principles of encoding extensible types applies:  we have an extensions bit up front
(before the bit-map of OPTIONAL or DEFAULT elements) which is set to zero if the abstract
value is in the root, one otherwise.

        my-sequence-val
           SEQUENCE
             {item-code    INTEGER (0..254),
              item-name    IA5String (SIZE (3..10))OPTIONAL,
              urgency      ENUMERATED
                             {normal, high} DEFAULT normal }
                ::= {item-code 29, item-name "SHERRY"}

Figure III-26:  A sequence value to be encoded

       B:10         (item-name present, urgency missing)
       C:00011011   (value of item-code)
       L:011 C:P534845525259   (length and value of item-name)

Figure III-27 Encoding of the sequence value
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Extension additions tend in practice to be marked OPTIONAL (or DEFAULT), but this is not a
requirement.  If in Version 2, one addition was not so marked, then Version 2 systems would
always have to encode additions, and would always have the extensions bit set to one.  Only
version 1 systems would set it to zero.

Values for extension additions are always encoded at the position of the insertion point, and a
decoder expects such encodings if the extensions bit is set to 1, not otherwise.

First, we must recap about extension additions in a SEQUENCE.  These may be either a single
element (called an extension addition type), or a group of elements contained in version brackets
(called an extension addition group).

The easiest way to describe the handling of an extensions addition group (and the way it is
described in the specification), is for the reader to mentally replace the entire group of elements
and the version brackets with a single OPTIONAL SEQUENCE, whose elements are the elements
of the addition group.  There is just one rider:  if all elements of the group are to be omitted in the
encoding (they are all marked OPTIONAL or DEFAULT), then there is no encoding for the entire
SEQUENCE, and the outer-most OPTIONAL bit-map would record its absence.  (An example of
this is given later).

We have now reduced the problem to a simple list of extension addition types, some or all of which
may be marked OPTIONAL, and hence may be missing in an encoding.  As with elements in the
root, a decoder needs to know which elements are present in the encoding, and which are not, and
once again a bit-map is used.  The problem in this case, however, is that Version 1 systems will not
know how many extension addition types there are in the specification, and hence will not know the
length of the bit-map.  Moreover, such systems will not know whether an extension addition type
was marked optional or not.  This produces two differences from the bit-map used for the root
elements:

• The bit-map contains one bit for every extension addition type,  whether it is marked
optional or not, recording its presence or absence in the encoding.

• The bit-map is preceded by a count giving the number of bits in the bit-map.

The count for the bit-map length is encoded as a normally small whole number.

The effect of encoding the count as a normally small whole number is that there is again provision
for fragmenting the extension additions bit-map into 64K fragments if the number of extension
additions exceeds 64K.  With the presence of version brackets, where additions are unlikely to
occur at less than about one year intervals, a "not supported" response from a tool would be
wholly appropriate!

Following the bit-map, we encode the value of the extension addition types, but in this case a
Version 1 system does not know the actual types involved, and would not be able to find the end of
the encoding of an extension addition, so each of the extension addition types is "wrapped up" with
a preceding length determinant.  The situation is slightly worse than this, however.  What should
the length determinant count, given that the decoder does not know the type that is wrapped up?
Clearly the only possibility is bits or octets, and octets was chosen.

So each extension addition type is treated as if it were an outer- level type being encoded.  If it is
present, but has zero bits (not likely to arise - a NULL, for example), then it encodes to a one-bit.
It then has zero padding bits added at the end to make it up to an integral number of octets and is
then added to the encoding preceded by a general length determinant (which, remember, is octet
aligned).
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This "wrapping up" then can be quite expensive on bandwidth, and it was for this reason (mainly)
that "version brackets" were introduced.  Because all the elements in a version bracket encode
(optimally) as the elements of an OPTIONAL SEQUENCE which is treated as a single extension
addition, we get only one "wrapper" instead of one for each element.

The "wrapping up" also has a significant implementation cost, in that it requires the complete
encoding (or at least the first 64K octets thereof) of the extension addition to be produced and any
necessary padding bits inserted, before the length wrapper count is known and can be encoded.
(This is similar to the problem of the use of the long definite form in BER to encode the length of a
SEQUENCE, rather than the indefinite form).  There is, however, no alternative to this wrapping
up if we want interworking between Version 2 and Version 1 systems (unless we go back to a TLV
approach for everything).

Now for an example of encoding an extensible SEQUENCE with one extension addition type and
one extension addition group added.  (We base this on the earlier sequence type example.)  Figure
III-28 shows the value to be encoded, and Figure III-29 shows the encoding (the notation used is
the same as in earlier examples of encodings).

This gives a total of 18 octets.  Again, if we take the worst case BER encoding as described
earlier, this gives 37 octets, and the best case gives 25.

   my-sequence-val
     SEQUENCE
        {item-code    INTEGER (0..254),
         item-name    IA5String (SIZE (3..10))OPTIONAL,
         ... !1 -- see para 14.6 for exception handling --,
         urgency      ENUMERATED {normal, high} DEFAULT normal,
         [[ alternate-item-code    INTEGER (0..254),
            alternate-item-name    IA5String (SIZE (3..10))OPTIONAL ]] }
                ::= {item-code 29, item-name "SHERRY",
                     urgency high, alternate-item-code 45,
                     alternate-item-name  "PORT" }

Figure III:28:  An extended sequence value for encoding

  E:1                     (extensions bit SET)
  B:1                     (item-name present)
  C:00011011              (value of item-code)
  L:011 C:P534845525259   (length and value of item-name)
  L:000010  B:11          (length - normally small whole number
                         and value of extensions bit-map)
  L:P0000001 C:10000000   (general length and
                         padded value of urgency)
  L:P00000011             (general length of version bracket addition)
  C:00101101              (alternate-item-code)
  L:001 C:P504F5254       (length and value of alternate-item-name)

Figure III-29:  The encoding of the extended sequence value
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16  Encoding CHOICE values.

The encoding of choice indexes for both root alternatives and for those outside the root has been
fully described earlier.  The only remaining point to note is that here, as for sequence, if the chosen
alternative is outside the root a Version 1 system will not be able to find the end of it, so we again
have a "wrapper", encoded in exactly the same way as extension additions in a SEQUENCE or
SET.

Here we give one example of each of these cases.

Note that version brackets are permitted in choice type extensions, but they do not affect the
encoding, and serve purely as a documentation aid for humans.  What matters is simply the list of
added alternatives, each of which must have distinct outer-level tags, even if they are in different
version brackets.

The values to be encoded are shown in Figure III-30 (assume an environment of automatic tags)
and the encodings are shown in Figure III-31, where "I:" is used to introduce the choice index
encoding.

In this example, worst case BER encodes with four octets in both cases, and best-case BER with
two octets.  PER took three octets in the second.  This is just one of a small number of cases where
PER can actually produce worse encodings than BER, but this is not often the case!

        Choice-example ::= CHOICE
               {normal   NULL,
                high     NULL,
                ... !2 -- see para 14.6 for exception handling --
                medium   NULL }

        first-choice Choice-example ::= normal:NULL
        second-choice Choice-example ::= medium:NULL

Figure III-30:  Two choice values for encoding

     first-choice:    E:0 I:0 C:    (a total of two bits)

     second-choice:   E:1           (extensions bit set)
                      C:000000      (index as a normally small
                                     whole number)
                      L:P00000001   (general length "wrapper")
                      C:00000000    (padded encoding of NULL)

Figure III-31:  The encodings of the choice values
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17  Encoding SEQUENCE OF and SET OF values.

There is nothing more to add here.  There is a length determinant up-
front giving the iteration count.   The form of this (depending on any
SIZE constraint on the SEQUENCE OF or SET OF) has been fully
discussed earlier.

Note that these types may have a SIZE constraint in which there is an extension marker.  As usual,
values outside the root encode as if there were no size constraint.

Two examples are shown in Figures III-32 and III-33.  The numbers have been kept deliberately
small for ease of illustration.  Note that in the example both the iteration count and the type being
iterated are extensible.  For a value of the SEQUENCE OF to be in its root only requires the
iteration count to be within the root.  The fact that the integer value 4 is outside the root of the
INTEGER in the third iteration is flagged in the encoding of the INTEGER, and does not affect the
extensions bit for the SEQUENCE OF.

There is nothingThere is nothing
further to say -further to say -
you know it all!you know it all!

  My-sequence-of SEQUENCE (SIZE(1..4), ..., 4) OF INTEGER (0..3, ..., 4)

            My-value-1 My-sequence-of ::= {1, 3, 4}

            My-value-2 My-sequence-of ::= {1, 2, 3, 4}

Figure III-32:  Two SEQUENCE OF values for encoding

          My-value-1:
                  E:0             (extensions bit)
                  L:10            (iteration count of 3)
                       E:0  C:01  (value 1)
                       E:0  C:11  (value 3)
                       E:1  L:P0000001 C:00000100  (value 4)
          My-value-2:
                  E:1             (extensions bit)
                  L:P00000011     (iteration count of 4)
                       E:0  C:01   (value 1)
                       E:0  C:10   (value 2)
                       E:0  C:11   (value 3)
                       E:1  L:P00000001 C:00000100  (value 4)

Figure III-33:  The encodings of the two SEQUENCE OF values
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18  Encoding REAL and OBJECT IDENTIFIER values.

The box says it all!  We have a general length determinant giving a
count in octets, then for REAL (for both BASIC-PER and
CANONICAL-PER) the contents octets of the CER/DER
encoding of REAL (they are the same).  For OBJECT
IDENTIFIER encodings, the specification actually references the
BER encoding, but the CER/DER encodings are exactly the same.

19  Encoding an Open Type

We have discussed the form of an outer-level encoding, and of a general
length determinant to provide a "wrapper" for extensions in sequence and
set and choice types.  Exactly the same mechanism is used to wrap up an
Open Type (a "hole" that can contain any ASN.1 type).  In general, the
field of the protocol which tells a decoder what type has been encoded
into the "hole" - into the Open Type field, may appear later in the encoding than that field, but with
PER a decoder will be unable to find the end of the encoding in the "hole" without knowing the
type. (Contrast BER, where there is a standard TLV wrapper at the outer level of all types, and
where no additional wrapper is needed nor used).  So in PER the wrapper is essential in the general
case, and is always encoded.

The inclusion of a wrapper in PER Open Types has
been exploited by some applications to "wrap-up"
parts of an encoding, even tho' it is not strictly
necessary to do so.

Consider an element of a large SEQUENCE
consisting of:

                security-data   SECURITY-TYPES.&Type (Type1)

This is an example of a "type constraint" on an Open Type, and the reader was referred to this
clause for an explanation of its usefulness.

From the point of view of abstract values, this is exactly equivalent to:

                security-data Type1

The PER encoding, however, will have a wrapper round Type1 in the first case, not in the second
(type constraints are not PER-visible).

This can be useful in an implementation, because it enables the main body of the protocol to be
dealt with in an application-specific way, leaving the security data unwrapped and unprocessed,
passing it as a complete package to some common "security kernel" in the implementation.

It is generally only in the security field that specifiers use these sorts of construct.

Length count inLength count in
octets, CER encodingoctets, CER encoding
of contentsof contents

General lengthGeneral length
followed by afollowed by a
padded encodingpadded encoding

If you want to "wrap-up" anIf you want to "wrap-up" an
ASN.1 type for easy ofASN.1 type for easy of
modular implementations, use anmodular implementations, use an
Open Type with a typeOpen Type with a type
constraint.constraint.
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20  Encoding of the remaining types

GeneralizedTime, UTCTime, ObjectDescriptor, all
encode with a general length determinant giving an
octet count, and contents the same as BER or CER
(for BASIC-PER and CANONICAL-PER
respectively).  Notice that this is the fourth
occurrence where BASIC-PER is not canonical, in
the interests of simplicity - the other three are:

• Encoding values of a set-of type.

• Encoding GeneralString and related character string types.

• Encoding a DEFAULT element (which is not a simple type) in a sequence or set type.

Canonical PER is, of course, always canonical.

That just leaves types which are defined using the "ValueSetTypeAssignment" notation, that is,
notation such as:

        MyInt1 INTEGER ::= { 3 | 4 | 7}
        MyReal1 REAL ::= {0 | PLUS-INFINITY | MINUS-INFINITY}

These are equivalent to:

        MyInt2 ::= INTEGER ( 3 | 4 | 7)
        MyReal2 ::= REAL (0 | PLUS-INFINITY | MINUS-INFINITY)

Initially the PER standard overlooked the specification of these types, but a Corrigendum was
issued saying that they encode using this transformation.

21  Conclusion

In a chapter like this, it seems important to emphasise that neither the
author nor any of those involved in publishing this material can in any way
be held liable for errors within the text.

The only authoritative definition of PER encodings is that specified in the
Standards/Recommendations themselves, and anyone undertaking implementations should base
their work on those primary documents, not on this tutorial text.

Nonetheless, it is hoped that this text will have been useful, and will help implementors to more
readily read and to understand the actual specifications.

The reader should now have a good grasp of the principles used in PER to provide optimum
encodings, but tempered by pragmatic decisions to avoid unnecessary implementation complexity.

Some things may appear to be unnecessarily complex, such as fragmenting bit-maps if they are
more than 64K, or encoding zero bits if an INTEGER is restricted to a single value, as such things
will never occur in the real world.  These specifications, however, result from applying a general

At last!  The final clauseAt last!  The final clause
describing PER encodings.  Idescribing PER encodings.  I
wish this book was a Web site, sowish this book was a Web site, so
that I could see how many peoplethat I could see how many people
had read all the way to here!had read all the way to here!
Well done those of you that madeWell done those of you that made
it!it!

Caveat Emptor!Caveat Emptor!
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principle (and general code in an implementation) to a wider range of circumstances, and are not
extra implementation complexity.

We have also seen in the examples how PER encodings achieve significant gains over BER in
verbosity, and even greater gains if sensible use of constraints has been made in the base
specification.

There is just one more chapter to come in this section (very much shorter than this one!).  That
discusses some other encoding rules that never quite made it (or have not yet made it!) to becoming
International standards, and the advantages and (mainly) disadvantages of "rolling your own"
encoding rules.
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Chapter 4
Other ASN.1-related encoding rules

(Or: So you have special requirements?)

Summary:

This chapter briefly describes other proposals for ASN.1 encoding rules that have been made from
time to time.  None of these are currently on a path for International Standardization as part of the
ASN.1 specifications, and this chapter can safely be omitted by all but the intellectually curious.
It is of no interest to most readers concerned with "What is ASN.1, how do I write it, and how do I
implement protocols defined using it."  But it does give an (incomplete) picture of other attempts to
enhance the ASN.1 notation with different encoding rules.

The order of coverage is not time order (saying when the germ of an idea first appeared within a
sometimes closed community is not easy), but is basically random!  The following are briefly
mentioned:

• LWER - Light-Weight Encoding Rules

• MBER - Minimum Bit Encoding Rules

• OER - Octet Encoding Rules

• XER - XML (Extended Mark-up Language) Encoding Rules

• BACnetER - BAC (Building Automation Committee) net Encoding Rules

• Encoding Control Specifications (ECS)

No doubt there are others lurking out there!

1  Why do people suggest new encoding rules?

As a basic work-horse, it is doubtful if
BER can be bettered.  It is simple,
straight-forward, and robust.  If you
keep its basic "TLV" approach, there
are few improvements that can be
made.

But it was clear in 1984 that it should
be possible to encode more efficiently

In the beginning there was chaos.  And the
greater Gods descended and each begat a new
Standard, and the people worshipped the
Standards and said "Give us more, give us
more!".  So the greater Gods begat more
Standards and more and more, and lo, there
was chaos once more!
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than BER, and several attempts were made prior to or around the time of the introduction of PER
to produce essentially PER-like encodings.  To avoid a proliferation of encoding rules, PER should
have been developed and standardised in the late 1980s, not the early 1990s, but it wasn't!  So
several "industry-specific" encoding rules emerged to fill the vacuum.

Currently, major tool vendors support only BER and PER.  Support for other encoding rules for
particular industry-specific protocols (supporting only the types used in those protocols, rather
than all ASN.1 types) by a library of routines to perform specific parts of the encoding (not by an
ASN.1 compiler, as defined and described in Section I Chapter 6) does however exist.

Producers of new encoding rules often claim either less verbosity on the line than BER, or greater
simplicity than PER (or both!).

But to-date, the standardizers of ASN.1 have not considered any of the alternative encoding rule
drafts that have been submitted to have sufficient merit to progress them as standards within the
ASN.1 suite.

That is not to say that they are (for example), necessarily on balance inferior to PER - everyone
accepts that if you started again with what you know now, PER could be improved - but providing
another standard for encoding rules that was very similar to PER and only a marginal improvement
on it would not make any sort of sense.  Tool vendors would not want to support it, and of course
existing implementations of protocols would have to be considered.  The ASN.1 encoding rules
have a high degree of inertia (the notation can be changed much more easily) because of the "bits-
on-the-line" that are flowing around the world every minute of every day.

Nonetheless, there continue to be attempts to provide slightly different encoding rules to support a
particular protocol for a particular industry, usually proposed by some consultancy or software
house associated with that industry, in the hope that those encoding rules will become the de facto
standard for that industry.  Such encoding rules rarely, however, achieve the market demand that
leads to their incorporation in the main ASN.1 compiler tools, or ratification as international
standards for ASN.1 encoding rules for use across all industries.

It is, perhaps, a sign of the success of the ASN.1 notation that many industries new to protocol
design are choosing to use ASN.1 to define their messages, but perhaps it is the NIH (Not Invented
Here) factor that so often leads to desires to cut down the notation, or to produce different
encodings for it.  Who knows?

2  LWER - Light-Weight Encoding Rules

Light-Weight Encoding Rules were first proposed
in the late 1980s when ASN.1 compilers started
to emerge, and were from the beginning the
subject of much controversy, with the Deutsches
Institut für Normung (DIN) strenuously opposing
their development as international standards.

Suggestions for LWER pre-dated work on PER, and the concern was not with the verbosity of
BER, but with the number of CPU cycles required to do a BER encoding.  They were approved as
a Work Item within ISO, and were being progressed up to the mid-1990s, when they were
abandoned (for reasons, see below).

Standards work was approved, but
was eventually abandoned - too many
problems!
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2.1  The LWER approach

The basic idea was simple, and was based on the
observation that:

• An ASN.1 compiler generates the pattern
for an in-core data structure to hold values
of an ASN.1 type (it is usually a whole
series of linked lists and pointers to similar
structures), defining that in-core data
structure using a high-level programming
language.

• Run-time support tree-walks that structure to generate encodings (at some cost in CPU
cycles) that are then transmitted down the line.

• A decoder reproduces a (very similar) in-core structure at the other end of the line.

Why not simply ship the contents of the in-core data structure directly?  That was in essence the
LWER proposal.

2.2  The way to proceed was agreed

Early work agreed several key points:

• The first step was to agree a model of computer memory on which to base the definition of
in-core data structures.

• The second step was to standardise a memory-based in-core structure for holding the
values of any ASN.1 type.

• The third step was to standardise how such a structure was to be transmitted to a remote
system.

2.3  Problems, problems, problems

Serious problems were encountered related to all
these areas.

As far as a model of computer memory was
concerned, at assembler language level (which no-
one uses today anyway), memory is made up of
addressable units capable of containing integers
or pointers to other addressable units or strings of characters (a simplification, but it will do).  But
the size of those addressable units - bytes, 16-bit words, 32-bit words - hard-ware varies very
much.

And if a structure is defined using such a model, how easy will it be to replicate that structure
using the features available in particular high level languages such as Java?

Just ship the contents of the memory
holding your ASN.1 value from
your machine to another machine
(standardising the in-core memory
representation).  A very simple
approach.

Agree a standard in-core representation
of ASN.1 values, and agree how to
ship it to another machine.  Easy.

Computers are actually very different
in the way they hold information and
pointers to other locations - the simple
"set of pigeon-holes" model just doesn't
hold up!



318                                                                                                                           © OSS,31 May 1999

More significant was the little-endian/big-endian problem.  (Named after the characters in
Jonathon Swift's Gulliver's travels who fought a war over whether eggs should be broken at their
"little-end" or their "big-end").  But in computer parlance, you look at basic hardware architecture
and proceed as follows:

• Assume byte addressing, and draw a picture of your memory with two-byte integers in it.

• Put an arrow on your picture from low addresses to high addresses. (Some people will
have drawn the picture so that the arrow goes left-to right, others the reverse.  This is not
important, that only affects the depiction on paper.)

• Now write down whether, for each integer, the first byte that you encounter in the direction
of the arrow is the least significant octet of the integer (a little-endian machine) or the most
significant octet of the integer (a big-endian machine).

Little-endians will probably have drawn the arrow going left-to-right, and big-endians will
probably have drawn it going right-to-left, but as said above, that is not important (both could
have drawn a mirror image of their picture).  What matters is whether the high-order octet of an
integer is at a higher or lower address position than the low-order octet.  And remember, what
applies to integers also (invariably) applies to fields holding addresses (pointers).

Unfortunately, both big-endian and little-endian machines exist in the world!

And if you have an in-core data structure representing an ASN.1 value on a little-endian machine,
and you copy that to a big-endian machine, decoding it into a usable from will certainly not be
light-weight!

So we need a big-endian and a little-endian variant of LWER, and you will only be able to use
LWER if you are transferring between similar (endian-wise) machines, otherwise you go back to
BER or PER.

But that was all assuming machines with byte addressing, and 16-bit integers and pointers.  Now
consider the possible permutations of 32-bit integers, or machines that can only (easily) address
(point to) 16-bit or 32-bit words .....

Suddenly we seem to need rather a lot of variants of LWER!

This was the basic reason for the DIN opposition to the work - even if standards were produced,
they would be useful only for transfers between very restricted families of machine architecture.
And add the problems of mirroring those low-level memory-based architectures in high-level
languages.  Throw in the fact that tool-vendors can, if they wish, define an LWER (separate ones
for each machine range that they support) to be used when their own tool is communicating with
itself on the same machine range, and what do you get?  Probably as much interworking as you
would get with LWER!

What LWER demonstrated was the importance of defining encoding rules (be they character-based
or binary-based) that were independent of any given machine architecture - the idea of having
something like BER or PER was vindicated.  (And of course character-based encodings are also
architecture independent.)
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2.4  The demise of LWER

Even if the above problems were sorted, there
were still issues about what to ship down the
line.  If the total memory the linked list
structures occupied was shipped, empty memory
within that total hunk would need to be zeroed
to prevent security leaks.  If empty memory was not shipped, then some form of garbage collection
or of tree-walking for transmission would be needed, none of which seemed very light-weight.

But what eventually killed the LWER work is something that nobody had expected.
Implementations of PER began to emerge.  Whilst it was expected that PER would produce about
a factor of two reduction in the length of an encoding (it did), it was wholly unexpected that it
would encode and decode twice as fast!  It did the job that LWER was trying to do!

Once you know, it seems obvious.  All the complexity and CPU cycles in PER relates to analyzing
the type definition and deciding what the encoding should be.  This is either a hand-implementors
brain-cycles, or is the compiler phase of a tool.  It does not affect run-time CPU cycles.

At run-time, it is a lot quicker (assuming code has been generated) to pick-up an integer value
from a known location, and add the bottom three bits (say) of that integer value to a bit-position in
a buffer than it is to generate the T and the L and the V for BER (probably using subroutine calls).

There were also gains because if you reduce the size of the encoding you reduce the CPU cycles
spent in the code of the lower layers of the protocol stack.

And finally, LWER was conceived in the mid to late 1980s, but machines got faster year-by-year.
Gradually the CPU cycles spent in encoding/decoding became insignificant and irrelevant (the
application processing for actual protocols also became more complex and time-consuming by
comparison).

LWER was dead.  Too many problems with developing it, and what it was trying to achieve
seemed no longer necessary.  It was finally abandoned in 1997.

3  MBER - Minimum Bit Encoding Rules

MBER was proposed in about the mid-1980s, but was
never approved for the Standards path.  Many of its
principles were, however, adopted when PER was
produced.

The idea behind MBER was to make full use of bounds information, and to produce encodings that
were "what you would expect".

So a BOOLEAN would encode into one bit, and the type INTEGER (0..7) would encode into three
bits.

MBER never addressed the encoding of all possible ASN.1 types (and in particular did not address
the problems solved in PER by a choice index and a bit-map for OPTIONAL elements).

There were other problems with producing
an LWER standard, but basically,
PER did the job anyway!

Hey - ASN.1 is great!  But
what about our legacy
protocols?
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The main thrust of the MBER work was to make it possible to produce an ASN.1 definition of a
type which, if MBER was applied to values of that type, would produce exactly and precisely the
same bits on the line as some existing hand-crafted protocol was producing.

Typically, the aim was to move from protocol definitions using the techniques described in Section
I Chapter 1 Clause 5.1 (pictures of octets) to ASN.1 specifications with no change to the bits on
the line.

(The reader may well ask "Why?", but this was a rather flattering recognition that use of the
ASN.1 notation was quite a good (clear) way to describe the fields in a protocol message.)

MBER was never progressed internationally, but (as stated above), the idea of "minimum bit
encodings" had a long-term influence and was included in PER.

4  OER - Octet Encoding Rules

At the time of writing this text, the future of OER is
unclear, nor is its final form fully-determined.  This text
merely gives an outline of what this specification appears
to the author to look like in the (very) late 1990s.

It has been proposed as the encoding rules for a particular industry sector in the USA, and perhaps
for international standardization for use with protocols in that sector.  The industry sector is
concerned with "intelligent highways".  The sector is using ASN.1 to define protocols for
communication between devices on the road-side and between them and control centres.  In some
cases the devices are large general-purpose computers (where BER or PER could certainly be
easily handled).  Some devices, however, will be more limited, and may not be able to handle the
(alleged) complexity of PER, but where much of the efficiency of PER is required.

(In relation to “alleged”, remember that all the complexity in PER is in the compile phase to
analyze what the encoding should be.  Once that is done, the actual encoding in PER is less code
and simpler than in BER.  Given a good cross-compiler system, even the simplest devices should
be able to handle PER.)

OER was originally developed around the same time as PER, but in ignorance of the PER work
(which was later folded into it).  At the time of writing, it is a mix of BER (using BER length
encodings) and PER.

The name Octet-aligned Encoding Rules stems from the fact that all elements of an OER encoding
have padding bits that make them an integral of eight bits.  So INTEGER (0..7) will encode into
eight bits (no tag, no length field), and BOOLEAN will encode into eight bits (no tag, no length
field).

Apart from the use of BER-style length encodings, OER is very much like PER, but omits some of
the optimisations of PER, producing a specification that is (arguably) simpler.

These encoding rules were considered by a joint meeting of the ISO/IEC and ITU-T ASN.1 groups
in 1999, and the idea of providing a "FULLY-ALIGNED" version of PER received some support.
This would in some ways complete the PER family, going along-side the existing UNALIGNED
(no padding bits) and ALIGNED (padding bits where sensible) variants.

PER (with bits of BER) -
with a difference!
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In discussion, it was felt that there was as yet insufficient customer demand to justify a "FULLY-
ALIGNED" version of PER, and that in any case such a version of PER would not in fact be
OER-compatible because of the multitude of differences (less optimization and use of BER
features) between OER and PER.

At the time of writing, international standardization of OER is not being progressed within ASN.1
standardization.

5  XER - XML (Extended Mark-up Language) Encoding Rules

XER is a relative new-comer (in 1999) to ASN.1 standardization.
Work on it is proceeding with great rapidity through electronic mailing
groups, and serious consideration of it will occur within ISO/IEC and
ITU-T about a month after the text of this book is put to bed!  The
outcome of that discussion cannot be predicted with any accuracy, but I
have a sneaming feeling that any second edition of this book may contain a substantial section on
XER!

Many readers will be aware that XML has a strong head of steam, and a lot of supporting tools.  A
marriage of XML with ASN.1 will undoubtedly be a good thing for both.  But XER is VERY
verbose!

XER is character-based, and carries XML start and end mark-up (tags which are usually the
names of the elements of ASN.1 SEQUENCES or SETS or CHOICES, which are frequently very
long) around ASN.1 items.

XER appears to hold out the promise of being able to send an XER encoding to a data-base system
that has only been configured with a schema corresponding to the fields of an ASN.1 SEQUENCE,
and to use code which is independent of the actual ASN.1 SEQUENCE definition (and which is
part of the database vendor's software) to automatically insert the received values into the
database.  This may prove to be worth the price of the verbosity of XER (perhaps!).

6  BACnetER - BAC (Building Automation Committee) net
Encoding Rules

These encoding rules are quite old, and were a very
honest attempt to produce PER before PER ever
existed!  They were never submitted to the ASN.1
group for international standardization, and have
largely been over-taken by PER (but are still in
use).

They are again an industry sector de facto standard in the USA for messages used in "intelligent
buildings" (compare the discussion of "intelligent highways" above).

BACnet encodings are used to control elevators, lights, central heating systems, and so on.

You are an XML
believer?   This is
for you!

Perhaps one of the first industry
sectors to decide to use ASN.1, but
to also decide to "roll their own"
encoding rules.
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From a technical point of view, there are some ASN.1 constructs for which BACnetER does not
provide unambiguous encodings, and they have no real advantage over the now standard PER, so it
is unlikely (in the opinion of this author) that they will have further impact on the international
scene.

7  Encoding Control Specifications

A very recent (1999) development in the work
on ASN.1, largely resulting from consideration
of requirements for variations of encoding
rules such as OER, was the production of text
for extensions to the ASN.1 notation called
"Encoding Control Specifications".

The idea is that the definition of an Encoding Control Specification (using a notation very distinct
from ASN.1) could be associated with an ASN.1 module in much the same way as a style-sheet
can be associated with a page of HTML or XML.  The Encoding Control Specification could vary
the way certain types were encoded, selecting (for specified types or all types) PER or BER styles
of length, including or omitting tags and/or padding bits, etc, etc.

This work (1999) is very much in its infancy.  Could the result be a meta-language (that a tool can
be built to use) which is powerful enough that a suitable Encoding Control Specification could be
applied to an ASN.1 module with the effect that types in that module are encoded with BACnetER
or OER (or perhaps even XER) encodings?

This is broadly the aim of the work.  But five years from now you may never have heard of it,  and
it may be as dead as LWER, or it may be supported by lots of tools and give important added
flexibility to ASN.1.  Don’t know!  Get the second edition (if there is one!) of this book!  (But it is
not yet even a formally approved Work Item in ISO, so this stuff is just glints in the eye at
present.)

If everyone is changing BER and PER,
let's have a meta-language to formally
specify the changes they want.  Good
idea?
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SECTION IV

History and Applications
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Chapter 1
The development of ASN.1

(Or: The ramblings of an old man!)

Summary:

This chapter is somewhat different in style from the rest of the book.  (This summary is not a list
of bullets, for a start!)  Whilst it does contain some facts, it is not so much a formal record of the
stages and dates in the development of ASN.1 (Olivier Dubuisson's book is better for that – see the
link via Appendix 5) as my own personal recollections of the various events that occurred along
the way.

Unusually for an academic text, in this chapter I blatantly use the "I" personal pronoun in several
sections.  It seemed appropriate.

I was involved in ASN.1 almost from its earliest days (I think that only Jim White – I talk about
Jim in the first clause of this chapter - can claim to have seen it through from its start, but he
"retired" from Standards work in the late-1980s) through to the present day.  I have been active in
a number of areas of Standardization within ISO, but ASN.1 has probably taken up the largest
part of my time because of its time-span (at the time of writing this text) of close on 20 years.

There were many other people who gave a great deal of their time to the development of ASN.1,
and if you list of some of them, you are in very great danger of being unfair to (and offending)
those who just drop off the end of the list, but who nevertheless made important contributions to
the work.  There is no easy criterion on who to mention, and there are some of my past fellow-
workers whose names I can no longer spell with accuracy, and have lost the attendance records!

And, of course, there are the current participants in the ASN.1 work that seem larger than life
simply because they are the current drivers.  But I am ignoring most of them!  I hope nobody takes
offence at being left out.

The structure of this chapter is not a simple time-line.  Rather, certain themes have been selected
for the major sub-headings, but within those sub-headings the material is largely presented on a
time-line basis.  I hope that this will ensure rather more continuity in the text and easier reading
than a pure time-line treatment, but the reader is advised that the major sub-headings are largely
self-contained, and can be read (or skipped, or omitted) in a more or less random order depending
on your interests.

One major part of this chapter contains the history of the development of character encodings, that
was promised in Section II Chapter 2.



© OS, 31 May 1999 325

1  People

Jim White played an active part (perhaps a
leading part - I am not sure) in the development
of the Xerox Courier specification, on which
ASN.1 was eventually based.

Courier was part of the "XNS" protocol stack.  It represented, I think, the first recognition in
protocol architecture of the value of providing a notation for the definition of protocol messages
that was supported by well-defined encoding rules and tools within high-level language systems to
enable users (not just computer vendors) to define their own protocols and to have an easy
implementation path for those protocols.

Jim (as Rapporteur in CCITT responsible for developing notational support for the X.400 work)
was largely responsible for bringing the Courier principles into international standardization and in
due course for the production of X.409.

Doug Steedman was also very active within both CCITT and ISO in these early days, and was (I
think) the first person to author a full-length tutorial text on ASN.1.  This is still read today, but
unfortunately was never updated to cover the work beyond 1990, as Doug also "retired" from
Standards work in the late 1980s.

I was ISO Editor for the early ISO texts (and after X.409, CCITT texts were copies of the ISO
texts).  Bancroft Scott came onto the seen in the late 1980s, when (due to other "retirements"), I
became Rapporteur for the ASN.1 work in ISO, and Bancroft, having volunteered to be Editor for
one part of ASN.1, found himself Editor for all the different parts (now six parts in ISO and six
corresponding ITU-T Recommendations), a role that he continues to occupy at the date of
publication of this text (1999).

In more recent years, Olivier Dubuisson has played a very active role in the development of
ASN.1, and is the author of the second/third/fourth major book on ASN.1.  (He can claim prior
publication to this text with a French version of his book - making his the second text, but at the
time of typing this I hope his English version will be later than this publication, making him also
the fourth - but he could make third as well!  Friendly rivalry!)

There are many, many, others that I could and perhaps should list, particularly colleagues in BSI
that have provided much support for ASN.1 over the years, but then I should also mention
colleagues operating within AFNOR and from Sweden, and colleagues in the USA that produced
course material for ASN.1 that is still used throughout the world today, and ...

Stop!  Enough of this clause!

Let's get this one out of the way first!
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2  Going round in circles?

There are so many areas of notational and encoding
support for computer communications where
understanding has emerged only slowly.  (Support
for "holes", described earlier, is one of these, as are
mechanisms to ensure interworking between
implementations of "version 1" and "version 2" of
protocol specifications).  Sometimes developments
are clear steps forward (as was the case when
ASN.1 was introduced in the early 1980s),
sometimes we make backward steps in some areas
to make progress in others.

When ASN.1 was born in the early 1980s, Open System's Interconnection (OSI) Standards were
"the best thing since sliced bread", and meetings to develop these Standards within ISO and
CCITT often involved several hundred people.  But in all the ISO groups defining OSI Standards
for applications, there was at that time a doubt, a debate, about what notation to use to clearly
specify the messages (including their semantics, and their bit-patterns) to be used to support the
application.  Every group was doing its own thing, with different approaches and different
notations.

Use of a BNF (Bacchus-Naur Form) style of specification was common in most early OSI drafts,
often with an encoding based on strings of characters (much as many Internet protocols are today).

When the first ASN.1 text (and it was not called ASN.1 in those days - that is another story - see
below) was sent as a liaison from CCITT to ISO, it was almost immediately welcomed by every
single application layer standardization group in ISO as:

• Great to have a common and standard notation for all to use in specifying protocols.

• Great to get away from verbose text-based exchanges.

(Note the latter point.  Despite later strong criticism of the verbosity of BER, and the eventual
emergence of PER, both are far less verbose than text-based encodings.)

ASN.1 became the notation of choice (and BER the encoding) for all the application layer OSI
Standards (and for the Presentation Layer as well).

But it was in the mid-1980s when ASN.1 started to become widely used outside of the OSI stack.
There was even some take-up (usually in a cut-down - some would say bastardised! - form) within
the Internet community, but the real expansion of ASN.1 was amongst the telecommunications
standards specifiers.

It is the case today that a great many telecommunications standards (for mobile phones, for
intelligent networks, for signalling systems, for control of electric power distribution, for air traffic
control) use ASN.1.  (See the next chapter.)

But today we still see a battle between those who prefer text-based protocols and the supporters of
ASN.1.  The emergence of XER (Extended Mark-up Language - XML - Encoding Rules) for
ASN.1 has in some ways married the two camps.  XER is based on ASN.1 notation for defining
types, but is totally character-based (and verbose!) for the transfer of values of those types.
However, you will hear people today (with some justification) saying:

We see through a glass darkly.
What is the "right" notational
support for people trying to define
messages for computer
communication?  ASN.1 has a lot
to offer, and has recognised many of
the problems (and provided some
good solutions) but the world has a
way to go yet.
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• HTML (with Netscape and Microsoft) made provision for write-it-once, read-it-anywhere
Web pages.

• JAVA made provision for write-it-once, run-it-anywhere programs.

• XML makes provision for write-it-once, process-it-anywhere data.

And, of course, there is still CORBA (with its IDL notation and IOP protocol as an encoding) as a
communications-specification-language contender!

And we still have a lot of Internet Engineering Task Force (IETF) specifications choosing to use
BNF and character-based exchanges as the preferred definition mechanism for messages.

It may be some time yet before the world homes-in-on, understands, or recognises the "right" way
to define and to encode computer communications (and that may or may not be ASN.1 in the form
we know it today).  We have progressed a lot (in terms of understanding the issues and problems to
be solved) from the early 1980s, but we have progressed rather less far in political (lower-case
"p") agreements, with a still (alarmingly large) number of contenders for notation to be used in
defining protocols.  And still people continue to suggest more!  (I guess it is no worse than the
programming language scene.)

So ... I look forward to the next decade with interest!  What notation will we be using in 2020 to
specify protocol standards?  I regret that I may not be around to find out!  Some readers will!

3  Who produces Standards?

There have over the years and into today
been five main sets of actors in the
production of Standards related to computer
communication, and in the adoption of
various forms of notation to support those
Standards.

Who are the five?

I would suggest:

• Main-frame computer vendors in the 1970s, but largely now unimportant.

• CCITT (renamed ITU-T at the start of the 1990s) in the 1980s and 1990s, and still the
dominant force in the specification of telecommunications standards today.

• ISO, working largely in collaboration with CCITT/ITU-T, but with its major influence
limited to the OSI developments of the 1980s, and perhaps not being a dominant force
today except in isolated areas.

• The IETF, its task forces and working groups, now responsible for the development of
Internet standards, which have (for many applications) become the de facto standards for
computer communication between telecommunications users (whilst ITU-T remains
dominant for standardising the protocols that make telecommunications possible).

There has always been a difficulty over de
jure and de facto standards for computer
communication around the world.  National
Standards Institutes often think/hope they
wield the power.  But the real power over
deciding how the world's computers
communicate is largely not in their hands,
but has shifted over time between many
actors.
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• And with increasing influence today, various consortia of manufacturers and other groups,
including the SET consortium and the World-Wide Web Consortium (W3C), and the
CORBA grouping.

The importance of computer vendors in protocol definition had largely declined before ASN.1
entered the scene, with the notable exception of XEROX which (as stated earlier) gave birth to the
original ASN.1 concepts.

ASN.1 as an international specification started life within CCITT as X.409, entitled "Presentation
Transfer Syntax and Notation".  (Note that the "transfer syntax" was placed first in the - English -
title, not the "notation"!  Today we would probably see the notation as the more important part of
ASN.1).  The work leading to ASN.1 was originally intended only to provide notational support
for the definition of the X.400-series e-mail protocols.  However, it very rapidly moved into ISO,
and during the early 1980s, although the work was collaborative, it was largely ISO National
Bodies (they were then called "Member Bodies") through which most of the input was provided.

In the late 1990s the pendulum swung back (partly due to the decline of OSI, and partly due to re-
organizations within ISO), with what had by then become ITU-T making most of the running in
progressing new work on ASN.1.

Within IETF, take-up of ASN.1 was always very patchy.  This was probably at least in part due to
the fact that most of the movers in IETF wanted a specification language that had support from
publicly available (for-free) tools.  BNF-based text-encodings satisfied this requirement.  ASN.1
did not, and does not to this day (1999).  So most use of ASN.1 in the IETF world was (and is)
using a cut-down version of ASN.1 that was (is) easily capable of being encoded without the use
of any tools.

By contrast, ITU-T telecommunications specifications use the full power of ASN.1, and the
telecomms and switch vendors implementing those specifications make full use of available tool
products for easy, rapid, and (largely) bug-free implementation of protocols that are highly
efficient in terms of band-width requirements.

4  The numbers game

The ASN.1 specifications have gone through a
variety of designations.

The first published specification was X.409
(1984).  X.409 pre-dated the use of the term "Abstract Syntax Notation One (ASN.1)", and was
part of the X.400 series.  It was seen, quite simply, as a notation (and encoding rules) to aid the
specification of protocols in the X.400 (OSI e-mail) suite.

Later it was completely re-written (with no technical changes - see later!) and published (with
some additions) by ISO as ISO 8824 and ISO 8825 in 1986, and the same text (again with some
additions) was then published by CCITT as X.208 and X.209 in 1988.  There was a later version
of this text (with minor corrections) published jointly by ISO and IEC in 1990 as ISO/IEC 8824
and ISO/IEC 8825.  This became known as the infamous "1990 version of ASN.1".

The "1994 version of ASN.1" (with very major extensions to the 1990 version) was jointly
published by ISO/IEC and CCITT as a whole raft of new documents, with identical text shown in
parallel columns below:

A boring list of the identifications of
ASN.1 specifications over the last
twenty years - skip it!
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                ITU-T X.680             ISO/IEC 8824-1
                ITU-T X.681             ISO/IEC 8824-2
                ITU-T X.682             ISO/IEC 8824-3
                ITU-T X.683             ISO/IEC 8824-4
                ITU-T X.690             ISO/IEC 8825-1
                ITU-T X.691             ISO/IEC 8825-2

Still later, there was a joint ISO/IEC and ITU-T "1997 version" (with only relatively minor
changes and additions to the 1994 version).  However, whilst the "final" text was approved in
1997, neither ITU-T nor ISO have yet produced a published copy that people can purchase
(current date early 1999)!  But watch this space, it is imminent!  (Later correctoin – you can now
buy it from ITU-T!)

Readers should note that in 1994 (and in 1997) X.680 was roughly the old X.208 with some
extensions, mainly in the character set area.  X.681 was the extensions related to the Information
Object concept.  X.682 was the table and relational and user-defined constraints, and X.683 was
parameterization.  X.690 was the old X.209 with CER and DER added, and X.691 was the PER
specification.

Phew!  I hate numbers!  'Nuff said.

5  The early years - X.409 and all that

5.1  Drafts are exchanged and the name ASN.1 is assigned

The first drafts of X.409 were produced in CCITT.  In
those days both ISO and CCITT had a "7-layer
model" for OSI, and they were totally different texts
(technically very similar, but largely developed
independently).  The era of strong collaboration
between the two groups was yet to come, and most
communication was by written "liaison statements",
usually accompanied by a draft of some specification.

This is how (during 1982) X.409 first reached ISO TC97 SC16 (Technical Committee 97 -
responsible for the whole of computer-related standards, Sub-Committee 16 - responsible for the
OSI model and for all work on OSI standards above the Network Layer).  At first, it was unclear
how these X.409 concepts fitted into the OSI model, and an ad hoc group (chaired, I think, by
Lloyd Hollis) was set up to consider the draft.  It rapidly became apparent that this work should be
slotted into the Presentation Layer of OSI, and a liaison statement was despatched welcoming the
work.

This X.409 draft came into an ISO vacuum - or perhaps I mean a primeval plasma!  There was
anarchy, with all the various application layer standards wondering what notational mechanisms to
use to define their protocols, and all having different approaches.  The new notation was extremely
rapidly accepted by every single Application Layer standards group as the means to define their
protocols.

It was at this time that a name was considered for the notation, and the ISO group suggested
Abstract Syntax Notation One, or "ASN1".  The CCITT group replied "OK, but never talk to us

What's in a name?  What's in a
"dot"?  Actually, an awful lot.
Without a dot confusion reigns,
add the dot, and all is hunkey-
dory!
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about ASN2".  ASN2 was never proposed, although there are those that have argued that ASN.1
(1994) should have been named ASN.2 (see later text).

Notice that in the last paragraph there was no dot after "ASN".  This was not a typo!  The original
proposed name was indeed "ASN1".  However, within six months it became apparent that people
were frequently mistyping it as "ANS1", and/or misreading it as "ANSI" - the American National
Standards Institute.  Considerable confusion was being caused!  I remember the day when the head
of the USA delegation (also Chairman of SC16!) came to the ASN.1 group and said "Look, I know
it isn't "ANSI", but it is so close that it is causing problems, can't you change the name?".
Uproar!  Explosion!  But when the dust settled, the "dot" had been inserted and we had "ASN.1".
Thereafter no-one ever mistyped it or confused it with ANSI!

The "dot" is not without precedent - all CCITT Recommendations are written with a dot - X.400,
X.25, V.24, so ASN.1 was readily accepted.

It was at this time that the term "BER" (Basic Encoding Rules) was coined, but in this case there
was recognition in both ISO and CCITT that other and perhaps better encoding rules could be
produced, but it took ten years before PER (Packed Encoding Rules) eventually emerged.

5.2  Splitting BER from the notation

There were some difficult moments in these early
years.  It was ISO and not CCITT that had a very
strong view on the importance of separating
abstract specification (Application Layer) from
encoding issues (the first published X.400
specifications were a monolithic protocol directly
on the Session Layer, with no Presentation Layer).
The X.409 draft (and the eventually published
X.409 (1984)) contained, interleaved paragraph by
paragraph, a description of a piece of ASN.1
notation and the specification of the corresponding
BER encoding.

The first thing that ISO decided to do was to rip these pieces apart, and completely re-write them
(in theory with no technical change) as two separate documents, one describing the notation (this
eventually became ISO 8824) and one describing BER (this eventually became ISO 8825).

As closer and closer collaboration occurred between ISO and CCITT in the following years (and
on the ASN.1 work in particular), the question of course arose - would CCITT adopt the ISO text
for ASN.1 and drop X.409?  After some agonising, it did, and in 1988 X.409 was withdrawn and
there were two new CCITT recommendations in the X.200 series, X.208 and X.209.
Recommendation X.200 itself was (and is) the CCITT/ITU-T publication of the OSI Reference
Model - eventually aligned with that of ISO but leaning technically far more towards the original
CCITT draft than to the OSI one - but that is a separate story!  (See my book "Understanding
OSI", available on the Web.)  Putting the ASN.1 specifications into the X.200 series was a
recognition that ASN.1 had become a general tool for the whole of OSI, having outgrown X.400.  I
like to think that its move to the X.680 and the X.690 range in 1994 represented its outgrowing of
OSI, but I think it was more due to the fact that it now needed six Recommendations, and there
was no suitable space left in the X.200 range!  (ISO does not have similar problems - a single part
Standard like ISO 8824 can grow into ISO 8824 Part 1 (ISO 8824-1), Part 2, etc, without
changing its number.)

ISO was serious about the
Presentation Layer.  Encoding
details should be kept clearly separate
(in separate documents) from
application semantics.  A great idea,
but CCITT were not quite as
evangelical about it.  But without
ASN.1 the concept would probably
never have reached reality.
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X.409 was written in a fairly informal style, but when it was re-written within the ISO community,
the rather stilted "standardese" language required for ISO Standards was used.   For example,
"must" must never be used - use "shall" instead (this was due to claimed translation difficulties
into French), don't give examples or reasons, just state clearly and exactly what the requirements
are - you are writing a specification of what people must do to conform to the Standard, not a
piece of descriptive text.

I often advise those who want a gentle introduction to ASN.1 to try to find an old copy of X.409
(1984) and read that - it is written in more informal language, and because the encodings are
specified along-side the notation, I believe that it is easier for a beginner to grasp.  But I was
interested to see that in Olivier's book he claimed that 8824/8825 were more readable and better
specifications than X.409!  I guess we all have our own views on what makes a good specification!

5.3  When are changes technical changes?

Genuinely, ISO attempted to re-write X.409
without making technical changes, but two
crept in.  The first was to do with the type
"GeneralizedTime".  These were in the days
when people had human secretaries to do their
typing and not word processors.  X.409 had been authored in the USA.  The ISO text for
8824/8825 had a UK Editor (mea culpa), and the secretary (another name - Barbara Cheadle!),
unknown to the Editor, corrected the spelling to "GeneralisedTime".  This went unnoticed through
all the formal balloting, but was eventually corrected before 8824 was actually published!
Irrespective about arguments over what is "correct" English, the term "GeneralizedTime" had to
stand, because this was a formal part of the notation, and any change to its spelling represented a
technical change!

The second change was only noticed in the early 1990s!  Far too late to do anything about it!
There was a point of detail about the character string type TeletexString that was only indicated in
X.409 in an example.  The example was lost in 8824, and the point of detail lost with it - I am
afraid I have forgotten the precise details of the point of detail!

5.4  The near-demise of ASN.1 - OPERATION and ERROR

The final incident I want to describe, in this
clause about the early days, is one which
almost completely de-railed ASN.1.

At that time, CCITT was locked into a four-
year time-frame called a Study Period where
at the start of the four years "Questions"
(capital Q!) were formulated.  (Each Question generally gave rise to a new Recommendation or to
an update of an existing one.)  At the end of the Study Period, a complete new set of CCITT
Recommendations were published (with a different colour cover in each period).  In 1980 the
colour was Yellow, Red in 1984, and Blue in 1988.

(1988 was the last year this complete re-publication occurred, so if you have a set of the Blue-
books in mint condition, keep them - they will be valuable fifty years from now!)

Correct a spelling, remove an example,
trivial things.  No problem. Don't you
believe it!

Easy wars are based on misunderstanding
or lack of understanding (difficult ones are
base on real clashes of self-interest).  This
was an easy war, but the short time-scales
for achieving peace amplified the conflict.
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It took time for the administration to prepare these new texts for publication, and in those days
CCITT went into a "big sleep" about twelve months before the end of the Study Period, with the
new or amended Recommendations finalised, and with only "rubber-stamping" meetings during the
following year.   It was in mid-1993, with the "big sleep" about to start - we were at five minutes
to midnight - when the CCITT ASN.1 group sent their latest draft of X.409 to the ISO group.

Mostly it was only minor tidies, but a whole new section had been added that "hard-wired" into the
ASN.1 syntax the ability to write constructions such as:

        lookup OPERATION
             ARGUMENTS name Some-type
             RESULT name Result-type
             ERRORS {invalidName, nameNotfound}
        ::= 1

and

        nameNotFound ERROR ::= 1

        invalidName ERROR
                PARAMETER reason BITSTRING
                        {nameTooLong(1),
                         illegalCharacter(2),
                         unspecified(3) }
                ::= 2

Well ... if the reader has read the earlier parts of this book, and in particular Section II Chapters 6
and 7, that syntax will look rather familiar, and the meaning will be perhaps fairly obvious.  But to
those in the ISO group faced with a simple liaison statement defining the revised ASN.1 (and with
absolutely no understanding or knowledge about even the existence of the ROSE work), there was
utter incomprehension.

What had this to do with defining datatypes for an abstract syntax (and corresponding encoding
rules)?  How were ERROR and OPERATION encoded (there was no specification of any encoding
in the draft)?  What on earth was an "operation" or an "error"?  Rip it all out!  Had there been
more time ....  But the ISO group decided that no-way was this stuff going into the ISO Standards
that were planned.  Agonies within CCITT.  Keep it in and risk different Recommendations and
Standards for ASN.1?

It was one minute to midnight when the next draft of X.409 reached ISO.  The offending
OPERATION and ERROR syntax had been removed - deep sigh of relief - but a new Annex had
been added defining a "macro notation".  This Annex was very, very obscure!  But many
programming languages had a "macro notation" to support the language.  (These usually took the
form of some template text with dummy parameters that could be instantiated in various places
with actual parameters - what was eventually introduced with the parameterization features of
ASN.1).  And it was one minute to midnight.  And the CCITT group had agreed to withdraw the
OPERATION and ERROR syntax, and deserved a favour in return.  The ISO group agreed to
accept the macro notation Annex.  Peace had been achieved and ASN.1 had been saved!

In retrospect, this whole incident was probably a good thing, although it had reverberations into
the late-1990s.  If OPERATION and ERROR had remained hard-wired, and there had been no
macro-notation, it would have been very much harder for ASN.1 to develop the concepts related to
Information Objects (and it was quite hard anyway!). More on this subject below.
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6  Organization and re-organization!

When the idea of Open Systems
Interconnection was first considered in ISO, it
came from the work in TC97 SC6 on HDLC
(High Level Data Link Control) from the
question "Who is going to define - and how -
the formats of what fills the HDLC frames?"
At a meeting in Sydney of TC97 it was
decided to create a new sub-committee, SC16,
to be charged with the task of developing a
model for OSI, and at its first meeting about
six different proposed models were submitted
from each of the major countries, but the
submission that most nearly resembled the eventual shape of OSI was that from the European
Computer Manufacturers Association (ECMA).  The USA voted against the establishment of a
new sub-committee, but by some rather interesting political manoeuvres (again beyond the scope
of this text!) became the Secretariat and provided the Chair for SC16.

SC16 became one of the largest sub-committees in the whole of ISO, and in its hey-day could only
meet by taking over a complete large University campus.  ASN.1 became a relatively self-
contained group within the Presentation Layer Rapporteur Group of SC16.

On the CCITT front, ASN.1 became a part of Study Group VII, and has had a relatively calm
(organizationally) life.  When CCITT changed its name to ITU-T, it had little organizational
impact at the bottom levels, the main change being that SG VII became SG 7!  This is the home of
ASN.1 to this day (within Working Party 5 of SG 7).

On the ISO front, there was a top-level re-organization when ISO agreed that standardization of
computer matters was a joint responsibility with the International Electro-Technical Commission
(IEC), and formed, with the IEC, a new "Joint Technical Committee 1" to replace TC97.  (There
has never been, and probably never will be, a JTC2).  This had zero impact on the ASN.1 work,
save that the cover-page of the Standards now included the IEC logo alongside that of ISO, and the
formal number became ISO/IEC 8824 instead of ISO 8824.  JTC1 inherited exactly the same SC
structure and the same officers and members as were originally in TC97.  It was at this time that
the name of contributors to the ISO work changed from "Member Body" to "National Body", but
they were still the same organizations - BSI, ANSI, AFNOR, DIN, JISC, to name just a few.

A slightly more disruptive reorganization was when SC5 (programming languages and databases)
and SC16 (OSI) were re-shaped into a new SC21 and SC22, but the transition was smooth and the
ASN.1 work was not really affected.

In the late 1990s, however, the Secretariat of SC21 decided it could no longer resource the sub-
committee, and it was split into an SC32 and SC33.  ASN.1 was placed in SC33 as a fully-fledged
Working Group (it had had the lower-status of a Rapporteur Group within a Working Group for all
its previous history), but it never met under this group as there was no National Body prepared to
provide the Secretariat for it, and SC33 was disbanded almost before it ever existed.  ASN.1
(together with other remnants of the original OSI work, including the continuing X.400
standardization) was assigned to SC6 (a very old sub-committee, responsible for the lower layer
protocol standards, and with a very long history of a close working relationship with CCITT/ITU-
T SG VII/SG 7).  This is likely to prove a good home for ASN.1 within ISO.

Organizational structures matter a bit,
but the technical work can often go on
despite re-organization above.   But
sometimes too much turbulence can make it
difficult to progress the work formally
(and hence to reach publication status).
Fortunately, with a joint project between
ITU-T/CCITT and ISO/IEC, if you
can't progress it in one forum, you can
probably progress it in the other!
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This last transition was less smooth than earlier re-organizations, and the formal progression of
ASN.1 work within ISO was disrupted, but at the technical level the work non-the-less continued,
and formal progression of documents was undertaken within the ITU-T structures.

7  The tool vendors

Of course, when ASN.1 was "invented" in the
1980 to 1984 CCITT Study Period, there were
no tools to support the notation.  Whilst it drew
on Xerox Courier for many of its concepts, it
was sufficiently different that none of the Xerox
tools were remotely useful for ASN.1.

It was the mid-1980s before tools began to appear, and these were generally just syntax-checkers
and pretty-print programs.  It was in the late 1980s that tools as we now know them started to
emerge, and the ASN.1 tool vendor industry was borne.  (See Chapter 6 in Section I for more
about ASN.1 tools).

Of course, in the early days, all those working on ASN.1 were essentially "users" - employees of
computer manufacturers or telecommunications companies, (sometimes Universities), and usually
with strong interests in some protocol that was using ASN.1 as its notation for protocol definition.
But at the last meeting (1999) of the ASN.1 group, the majority of those around the table had
strong links one way or another with the vendor of some ASN.1 tool - ASN.1 had come of age!

There was an interesting transition point in the late 1980s when tool vendors were beginning to
appear at Standards meetings, and were complaining that there were some features of the ASN.1
syntax that made it hard for computers to read (the main problem was the lack of a semi-colon as a
separator between assignment statements - eventually resolved by introducing a colon into the
value notation for CHOICE and ANY values).  At that time, there were strong arguments that
ASN.1 was not, and was never intended to be, a computer-processable language.  Rather it was a
medium for communication between one set of humans (those writing protocol standards) and
another set of humans (those producing implementations of those protocols). That view was
rapidly demolished, and today ASN.1 is seen as very much a computer language, and many of the
changes made in the early 1990s were driven by the need to make it fully computer-friendly.

8  Object identifiers

8.1  Long or short, human or computer friendly, that is the question

Object identifiers (I'll use the informal
abbreviation OID below) pre-dated the
"Information Object" concept by at least five
years, although today they are closely associated
with that concept.

The tool vendors.  The Traders of
ASIMOV's "Foundation".  A law unto
themselves, but vital to the success of the
enterprise and contributing immensely to
its development in the middle years.

Again, what's in a name?  Well the
length might matter if you are carrying
it in your protocol!
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It was in the mid-1980s that it became apparent that many different groups within OSI had a
requirement for unambiguous names to identify things that their protocol was dealing with, and
which could be assigned in a distributed fashion by many groups around the world.

A similar problem had been tackled a few years earlier in SC6, but with the narrower focus of
providing a name-space for so-called "Network Service Access Point Addresses" - NSAP
addresses, the OSI equivalent of IP addresses on the Internet.  If the reader studies the NSAP
addressing scheme, some similarities will be seen to the Object Identifier system, but with the very
important difference that the length of NSAP addresses had always to be kept relatively short,
whilst for application layer protocols long(ish) object identifiers were considered OK.

In around 1986 a lot of blood was spilt over the OBJECT IDENTIFIER type, and it could easily
have gone in a totally opposite direction (but I think the right decision was eventually taken).  This
was not a CCITT v ISO fight - by this time the two groups were meeting jointly, and divisions
between them were rarely apparent.  (That situation continues to this day, where at any given
meeting, the various attendees can often claim representation of both camps, but where if they are
delegates from one camp or the other, discussion almost never polarises around the two camps.)

To return to OIDs!  The argument was over whether an OID should be as short as possible, using
only numbers, or whether it should be much more human-friendly and be character-based, with
encouragement to use quite long names as components within it.

The eventual compromise was what we have today - an object identifier tree with unique numbers
on each arc, but with a rather loose provision for providing names as well on each arc.  In the
value notation for object identifiers, the numbers always appear (apart from the top-level arcs,
where the names are essentially well-known synonyms for the numbers), but the names can be
added as well to aid human-beings.  In encodings, however, only the numbers are conveyed.

A further part of the compromise was the introduction of the "ObjectDescriptor" type to carry long
human-friendly text, but text that was not guaranteed to be world-wide unambiguous, and hence
which was not much use to computers.  As stated earlier, the "ObjectDescriptor" type was the
biggest damp squib in the whole of the ASN.1 armoury!

A very similar battle raged - but with pretty-well the opposite outcome - within the X.500 group a
year or so later.  X.500 names (called "Distinguished Names") are an ASN.1 data type that is
(simplifying slightly again) essentially:

                SEQUENCE OF
                  SEQUENCE
                    {attribute-id    TYPE-IDENTIFIER.&id,
                     attribute-value TYPE-IDENTIFIER.&Type}

Remember that "TYPE-IDENTIFIER.&id" is essentially a synonym for "OBJECT IDENTIFIER",
so it is clear that X.500 names are very much longer than ASN.1 names.

There was pressure in the late 1980s (from groups outside of X.500) for X.500 to support use of a
simple single OBJECT IDENTIFER (a so-called "short-form" name) along-side its Distinguished
Names (so-called "long-form" names), and I believe it was formally agreed within SC21 that this
should happen, but I think it never did happen!
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8.2  Where should the object identifier tree be defined?

Another problem with the definition of the OBJECT
IDENTIFIER type is that it is not just defining a data type,
it is implicitly establishing a whole registration authority
structure.

This went beyond the remit of the ASN.1 group (a separate group in OSI was charged with sorting
out registration authority issues, and produced its own standard).  This was a source of continuing
wrangling over almost a decade.  Initially (mid-1980), it was within ISO that people were saying
"The description of the object identifier tree should be moved from ASN.1 to the Registration
Authority Standard", but the CCITT people were saying "No-way - ASN.1 users want to be able
to read that text as part of the ASN.1 Standard, and control of it should remain with the ASN.1
group."

It stayed in the ASN.1 Standard until (and including) the 1990 publication.  But in the early
1990s, the roles were reversed, and there was pressure from ITU-T (largely from outside the
ASN.1 work) to move the text from X.680 (ISO/IEC 8824-1) to X.660 (ISO/IEC 9834-1).  There
was some opposition within the ASN.1 group itself, but the move happened, and relevant text was
deleted from X.680/8824 and replaced by a reference to X.660/9834.  Ever since then, there have
been various liaisons between the keepers of the respective standards to try to ensure continued
consistency!  Fortunately, however, the work on the object identifier tree itself was completed long
ago and is very stable.  (But see the next clause!)

8.3  The battle for top-level arcs and the introduction of RELATIVE OIDs

The change of name from CCITT to ITU-T
was a simple top-level name change, yes?
But remember that two of the top arcs of
the object identifier tree were "ccitt" and
"joint-iso-ccitt".

ITU-T proposed two new arcs (with new numbers) for "itu-t" and "joint-iso-itu-t".  Those who
have read the text associated with figure III-13 will realise that whilst it was not wholly impossible
to accede to this request, it would be very difficult!  Eventually, the new names were accepted as
synonyms for the existing arcs (keeping the same numbers).

It was shortly after this that there became an increased demand by international organizations for
object identifier name space using a top arc.  Organizations realised that object identifier values
they allocated (and used in their protocols) would be shorter if they could get "hung" nearer the top
of the tree.  ITU-R, the International Postal Union, and the IETF were among organizations
expressing (with various degrees of strength) the wish to wrest some top-level arcs from ISO and
ITU-T (who were surely never going to use all the ones allocated to them).

This issue looks today (1999) as if it is being defused by the addition of a new type called
RELATIVE OID.  (Yes, at the time of writing it is OID, not OBJECT IDENTIFIER.)   A
RELATIVE OID value identifies parts of the object identifier tree that sits below some (statically
determined) root node, and the encodings of these values only contain the numbers of the nodes
beneath that root node, omitting the common prefix.

This rather simple proposal was a very much cut-down version of an earlier proposal that would
have allowed the common prefix to be transmitted in an instance of communication, and then be

Demarcation disputes.  Ugh!

Everyone wants to be at the top of the tree,
but in this case for good reasons - it reduces
the verbosity of their protocols.
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automatically associated with particular relative oid values that were transmitted later in that
instance of communication.

(It is always very difficult when writing books to avoid them becoming rapidly out of date - you
either don't talk about things like RELATIVE OID, or you do, with the danger that a few weeks
after publication you find it has either been withdrawn or has been dramatically changed.  But in
this case, I am fairly confident that it will be added to ASN.1 much as described above.)

9  The REAL type

The REAL type might seem innocuous
enough, but was also the source of
controversy around 1986.

Everyone agreed we had to have it, but how
to encode it?  (The actual encoding eventually agreed is fully described in Section II Chapter 2
clause 3.5, and the interested reader should refer to that.)

There were several issues, of which binary versus character encodings was one.  As usual, the easy
compromise was to allow both, but that produced problems later when canonical encodings were
needed, and the rather dirty fudge had to be taken of saying that base 2 and base 10 values that are
mathematically equal are regarded as distinct abstract values, and hence encode differently, even in
the canonical encoding rules.

But the main problem was with the binary encoding format. There was a (fairly new) standard at
that time for floating point formats for computer systems, and it was generally used by people
handling floating point in software, but not by existing hardware (later it got implemented in
chips).  Naturally, there were those that advocated use of this format for ASN.1 encodings.

The counter-argument, however, eventually prevailed (and again I think this was the right
decision).  The counter-argument was that we were some time away from a de facto standard for
floating point formats, and that what mattered was to find a format that could be easily encoded
and decoded with whatever floating point unit your hardware possessed.

This principle dictated, for example, the use of a "sign and magnitude" (rather than "two's
complement" or "one's complement") mantissa, because "sign and magnitude" can be easily
generated or processed by hardware of the other two forms, but the converse is not true.  It was
also this principle that gave rise to the rather curious format (not present in any real floating point
hardware or package) involving the "F" scaling factor described in 3.5.2.

Finally, there was a lot of pressure at the time to support specific encodings that would identify
"common and important" numbers that otherwise would have no finite representation, such as
"3.14159..." and "2.7183...", and also values such as "overflow", and "not-a-number", but in the
end all that was added was encodings to identify PLUS-INFINITY and MINUS-INFINITY, with
plenty of encoding space for identification of other things related to type REAL later.  The
pressure to provide these additional encodings evaporated, and no extensions have been made, nor
do any seem likely now.

Probably just an academic exercise - nobody
uses REAL in actual protocols!  But it
produced its own heated moments.
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10  Character string types - let's try to keep it short!

The history of the development of encodings for
"characters" (and discussion on just what a
"character" is) is much broader than ASN.1.
ASN.1 has not really contributed to this work, but
rather has done its best to enable ASN.1 users to
have available notation that can let them reference
in their protocols, clearly and simply, these various character encoding standards.

The result, however, has been a steady growth in the number of character types in ASN.1 over the
years, with a lot of fairly obsolete baggage being carried around now.

Section II Chapter 2 promised that we would here provide a description of the history of the
development of character encoding schemes, and the impact this had on ASN.1 over the years.
What follows is the main parts of that history (but detail is sometimes lacking, and it is not a
complete history - that is left to other texts), with the impact on ASN.1.

10.1  From the beginning to ASCII

The earliest character coding standards were
used for the telegraph system, and on punched
paper tape and cards.  The earliest formats
used 5 bits to represent each character (32
possible encodings), with an encoding for
"alpha-shift" and "numeric-shift" to allow
upper-case letters, digits, and a few additional
characters.

Later the use of 7 bits with an eighth parity bit
became the de facto standard, and this eventually became enshrined in the 8-bit bytes of current
computers.  The ASCII code-set is the best-known 7-bit encoding, with essentially 32 so-called
"control characters" (many of whose functions related to the framing of early protocol packets) and
94 so-called "graphics characters" (printing characters), plus SPACE and DEL (delete).  (DEL, of
course, is in the all-ones position - 127 decimal - because on punched paper tape the only thing
you could do if you had made a mistake was to punch out all the rest of the holes - you could not
remove a hole!).

ASCII has formed the basis of our character coding schemes for close on forty years, and is only
now being replaced.  ASCII is in fact the American variant of the international standard ISO 646,
which defines a number of "national options" in certain character positions, and many other
countries defined similar (but different) national variants. The UK variant was often called
(incorrectly!) "UK ASCII".

10.2  The emergence of the international register of character sets

Early computer protocols used 7 bit encodings,
and retained the use of the eighth bit as a parity
bit.   That is why we find today that if you wish
to send arbitrary binary over e-mail, it gets
converted into a seven-bit format, and more or

You were promised the history in
Section II, so here it is!  There are
probably better histories around on the
Web - go look for them!

Five-bit codes, seven-bit codes.  And to
come later, 16 bit codes and 32 bit
codes!  I doubt anyone will EVER
suggest 64 bit codes ... but on second
thoughts, how many bits does Microsoft
Word take to indicate fonts etc?  (OK,
that is usually per paragraph not per
character, but in the future ... ?)

Providing encodings for all the
characters in the world - first attempt,
and not a bad one.



© OS, 31 May 1999 339

less doubles in size!  More modern protocols (such as those used to access Web pages) provide
what is called "full eight-bit transparency" and the eighth bit is a perfectly ordinary bit which can
carry user information.

As protocols developed, the use of a parity bit was very quickly dropped in favour of a Cyclic
Redundancy Code (CRC) as an error detecting code on a complete packet of information, and
character coding schemes were free to move to an 8-bit encoding capable of representing 256
characters.

There were two developments related to this:  The first of these was developed as early as 1973.
This was ISO 2022, which established a framework (based on ISO 646) for the representation of
all the characters in the world.  (I am afraid the following description is of necessity somewhat
simplified - the so-called multiple-byte formats and the dynamically redefinable character sets of
2022 are not mentioned in what follows.)

The way ISO 2022 worked was to identify the first two columns (32 cells holding control
characters) of the ASCII structure as cells that could contain (represent, define) any so-called C-
set of characters, and the remaining 94 positions (keeping the SPACE and DEL positions fixed as
SPACE and DEL) as cells that could contain (represent, define) any so-called G-set.  Moreover,
within the C-set positions, the ASCII ESC character would always be kept at that precise position,
so a C-set of characters was in fact only allowed to be 31 control functions.

The old parity bit could be used to identify one of two meanings (one of two character sets) for
encodings of C-sets, called the C0 and the C1 set.  If one of the C-sets in use included control
characters for "shift-outer" and "shift-inner" (which affected the interpretation of G-set but not C-
set codes), then the combination of using these together with the old parity bit enabled reference to
(encodings of) up to four G-sets, called G0, G1, G2, and G3.

Finally, there was the concept of a register of C-sets and G-sets that, for each register entry, would
assign characters to each position in the ASCII structure.  At any point in time, up to two C-sets
and up to four G-sets could be "designated and invoked" into the C0, C1, G0, G1, G2, and G3
positions.  The ESC character (required to be present in the same position in all C-sets, remember)
was given a special meaning.  Each register entry contained the specification of binary codes that
could follow the ESC character to "designate and invoke" any register entry into either a C0 or C1
position (for C entries) or into one of the G0 to G3 positions (for G-entries).

All that remained was to produce the register entries!  This became the "International Register of
Coded Character Sets to be used with Escape Sequences", commonly referred to as "the
international register of character sets".

The register was originally maintained by the European Computer Manufacturer's Association
(ECMA), and grew to well over 200 entries covering virtually the entire world's character sets.
Today it is maintained by the Japanese Industrial Standards Committee (JISC), the Japanese
equivalent of BSI and ANSI and AFNOR and DIN.  Both ECMA and JISC provide free copies and
free up-dates to interested parties, but JISC now maintains a web-site with every register entry on
it.  (See Appendix 5 if you want to access this site).

ASN.1 provides full support for ISO 2022, with GraphicString and GeneralString, and relies on
the International Register for the definition of many of its other character string types.
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10.3  The development if ISO 8859

ISO 8859 came much later (in 1987), and
came in a number of "parts".

The problem with the 2022 scheme was that
because of the inclusion of ESC sequences to
make new designations and invocations,
encodings for characters were not fixed length.

ISO 8859 was designed to meet the needs of European languages with a fixed (eight bits per
character) encoding. Each part of 8859 specified ASCII as its so-called "left half" - the encoding
you got with the old parity bit set to zero, and a further 94 printing characters in its "right-half"
designed to meet the needs of various European languages.  So 8859-1 is called "Latin alphabet
No.1", and in addition to ASCII provides characters with grave, circumflex, acute accents,
cedillas, tildas and umlauts, together with a number of other characters.  8859-6 is called
"Latin/Arabic", and contains arabic characters in its right-half.

ASN.1 never provided any direct support for 8859, although 8859 encodings were quite often used
in computer systems in Europe.

10.4  The emergence of ISO 10646 and Unicode

10.4.1  The four-dimensional architecture

A very major development in the early 1990s (still,
almost a decade later, to work its way completely
into computer systems and protocols) was the
development of a completely new frame-work for
encoding characters, wholly unrelated to the ASCII
structure.  (But of course capable of encoding
ASCII characters!)

Here you must look at figure IV-1 (yes, the first figure in this chapter - you must be feeling
deprived!).  This shows a four-dimensional structure (compared with the ASCII 2-dimensional
code table).

Figure IV-1 shows a street of 256 houses.  Each house has 256 "planes" in it (positioned vertically,
and running left to right within the house on the street).  Each plane has 256 rows in it (running
top to bottom within each plane of each house).  And each row has 256 cells in it (running from
left to right within each row).  Each cell can contain (define, represent) a different character.
(Actually, the correct technical term for a house is a "group" - "house" is not used, but I prefer to
call them houses!)

Giving European languages full coverage
with an efficient encoding - a standard
ignored by ASN.1!  Who cares about
Europe in International Standardization?
(President of the European Commission,
please do not read this!)

Probably the most important
development in character set encoding
work EVER.  It is hard to see a
likely change from this architecture at
any time in the future.  Wow!  At
ANY time in the future?  Yup.
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The very first plane (number zero) of the first house (number zero) is called the Basic
Multilingual Plane or "BMP".  The first row of that plane contains Latin Alphabet No 1 (8859-1),
and hence contains ASCII in its left half.

(In the early drafts of ISO 10646, the other parts of 8859 occupied successive rows, and hence
ASCII appeared multiple times, but this was removed in the "fight" with Unicode (see below), and
the other parts of 8859 only have their right-hand halves present.)

Notice that any cell of any row of any plane of any house can be identified by four values of 0 to
255, that is to say, by 32 bits.  So in its basic form ISO 10646 is a 32-bits per character encoding
scheme.

Notice also that the numerical value of these 32 bits for ASCII characters is just the numerical
value of those characters in 7-bit ASCII - the top 25 bits are all zero!

Now, it is a sad fact of life that if

256

256

256

Basic Multi-lingual Plane

ASCII

Figure IV-1:  256 houses each with 256 planes each with 256 rows each with 256 cells

256
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• You take all the characters there are in the world (defining things like "a-grave" and "a-
circumflex" and even more complicated combinations of scribbles used in the Thai
language as separate and distinct characters requiring a fixed length encoding);  and

• You admit that glyphs (scribbles) in the Chinese and Japanese and Korean scripts that look
to a Western eye to be extremely similar are actually distinct characters that need separate
encodings;  and

• You include all the scribbles carved into Egyptian tomb-stones and on bark long-preserved
in deepest Africa;  and

• You include ASCII multiple times by putting the whole of each part of 8859 into
successive rows of the BMP;  then

you find that there are nowhere near 2 to the power 32 "characters" you would want to encode, but
that there are very significantly more than 2 to the power 16.

The ISO 10646 structure permits all such characters to be represented with a fixed 32 bits per
character, but is this over-kill?  Can we manage with just 16 bits per character if we do some
judicious pruning?

10.4.2  Enter Unicode

(For a pointer to Unicode material on the
Web, see Appendix 5).

Whilst the ISO group JTC1 SC2 was
beavering away trying to develop ISO
10646, computer manufacturers were
independently getting together to recognise
that neither the ISO 2022 nor the ISO 8859 schemes were adequate for the increasingly global
communications infrastructure and text processing requirements of the world, but they jibbed at
going to a full 32 bits per character.  Can't we make 16 bits suffice?

Well, we can reverse some of the decisions taken above.  Let's ignore Egyptian hierogplyphs and
anything of interest only to librarians.  Let's also introduce the concept of combining characters
with which we can build scribbles like a-grave etc (this does not save much for European
languages, but saves a lot for Eastern languages such as Thai).  Of course, from one point of view,
use of combining characters means we no longer have a fixed length encoding for each character,
but that depends on your definition of what is a character!

Finally, let us perform "Han unification" or "CJK Unification" to produce a "unified code" or
"Unicode".  CJK Unification means that we look at the scribbles in the Chinese (C), Japanese (J),
and Korean (K) scripts with a western eye, and decide that they are sufficiently similar that we can
assign all three similar scribbles to a single cell in our street of houses.

Now we have cracked it!  There are less than two to the power sixteen (important) characters in
the world, and we can fit them all into the Basic Multi-lingual Plane and use just 16 bits per
character to represent them.

Of course, when the final balloting to approve the ISO 10646 draft ocurred, there were massive
"NO" votes, saying "replace it with Unicode"!

The manufacturers flex their muscle.  32
bits per character is not necessary or
sensible for commercially important
character sets!  16 bits can be made to
work.
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10.4.3  The final compromise

ISO 10646 was published as an International
Standard in 1993 (about 750 pages long!), and
the Unicode specification was published in
1992 by Addison Wesley on behalf of the
Unicode Consortium, with Version 2 appearing
in 1996.

Unicode and ISO 10646 were aligned:  the CJK unification and the inclusion of combining
characters was agreed, and the Basic Multi-lingual Plane of ISO 10646 was populated with
exactly the same characters as appeared in the Unicode specification, and close collaboration has
continued since.

However, important differences remained in the two texts.  The ISO text describes three "levels of
implementation" of ISO 10646.  In level 1, combining characters are forbidden.  Everything is
encoded with the same number of bits, 32 (UCS-4) bits if you want the whole street, or 16 (UCS-
2) bits if you just want the characters in the Basic Multi-lingual Plane.  In level 2, you can use
combining characters, but only if the character you want is not present in a populated cell (this
forbids the use of "a" with the combining character "grave" to get "a-grave").  In level 3, anything
goes.  Unicode does not describe these levels, but it is in the spirit of Unicode to use combining
characters wherever possible.

There are also other differences between the texts that do not relate to character encoding (and
hence are irrelevant to ASN.1): the Unicode specification contains some excellent classificatory
material that says what characters should be regarded as numbers, upper/lower-case mappings,
and so on; such text is missing from ISO 10646.

After the initial publication of Version 1 of Unicode and of ISO 10646, work continued.  There are
now characters in cells outside of the BMP, but both groups have agreed a mechanism for
referencing them within a 16-bit encoding scheme (called UTF-16 - Universal Transformation
Function 16) by using reserved characters in the BMP as escape characters to effectively designate
and invoke other planes into the BMP position (although that is not the terminology used).

Another extremely important development was the definition of UTF-8, briefly described in clause
12 of Section II Chapter 2.  This provides a variable number of octets per character, but with all
ASCII characters represented with just one octet, with their normal ASCII encoding (with the top
bit - the old parity bit - set to zero).

For in-core handling of characters in programming languages (and operating system interfaces),
computer vendors are supporting 16 bits (usually) or 32 bits (some) or both representations of
characters.  But for storage on disk or for transfer, UTF-8 is proving a very popular format.

10.5  And the impact of all this on
ASN.1?

Current ASN.1 support for character sets has
been described in Section II, and it should now
be possible for the reader to relate that text to
the development of character set standards.
The history of character set work in ASN.1

And the amazing thing about international
standardization is that compromises ARE
often reached, and standards agreed.

On the character set front, ASN.1 has
just rolled with the punches.  It has not
seriously contributed to either repertoire
definitions or to encodings.  What it
HAS tried to do is to provide simple
notational support for referencing
character set standards.
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has, however, been a long up-hill struggle to try to meet the demands of its users.  It has not
always succeeded in keeping everybody happy!

X.409 made no use of any of the ISO character set standards apart from ISO 646 (equal to CCITT
International Alphabet #5), which it used in the definition of ISO646String (no control characters)
and IA5String (control characters included).  "ISO646String" is still a permitted type, but the
synonym "VisibleString" is preferred.  NumericString and PrintableString were also present in
X.409, but with the character repertoires and the encodings hard-wired into ASN.1 (as they still
are today).

The only other two character string types in X.409 were T61String (with the preferred synonym
today of TeletexString) and VideotexString, which were defined by reference to what was then
Recommendation T.61 and T.100 and T.101.

In the early 1980s, writers of ISO standards had to get special permission to reference any
specification that was not an ISO standard, so  TeletexString and VideotexString posed some
problems.  The decision was taken (when the re-write that produced ISO 8824 and ISO 8825 was
done) to re-cast the definitions (with no technical change!) in terms of references to the
international register of character sets described earlier, and this was successfully accomplished
(by adding some new register entries!).

At the same time, GraphicString and GeneralString were added to provide full support for the
International Register.

There were two problems with this: first, new entries were being continually made to the register,
so it was very unclear what implementation of GraphicString and GeneralString really meant -
these were open-ended specifications.  Second, and perhaps more importantly, recasting
TeletexString as a reference to particular register entries effectively "froze" it at the 1984 T.61
definition, but many countries made (successful) attempts to get their scripts added to the teletex
Recommendations and were (perhaps not surprisingly!) annoyed that they were still not part of the
formal definition of TeletexString in ASN.1!

Eventually the political pressure to change TeletexString in ASN.1 became just too great, and in
1994 a whole raft of new register entries was added as permissible entries to designate and invoke
within a TeletexString encoding.  What about existing implementations of existing protocols?
Political pressure is no respecter of minor technical matters like that!  The formal definition of
TeletexString changed!

There was another change that also caused some upsets.  Formally, VisibleString and IA5String
referred to register entry #2, which was the so-called "International Reference Version" of ISO 646
(but virtually everyone - incorrectly - interpreted that as "ASCII").  But ISO 646 was changed in
the late 1980s to introduce the "dollar" character - present in ASCII, but not in the International
Reference Version of ISO 646. So ASN.1 changed the reference to register entry #6 (ASCII).  At
the same time it changed the default G0 set at the start of all GraphicString and GeneralString
encodings from #2 to #6.  This caused great anger from the X.400 group, who now recommend
that in these encodings the G-sets should be specifically designated and invoked by escape
sequences, and a default should not be assumed.

Then ISO 10646 came along, and the ASN.1 group watched the discussions between the ISO
workers and the Unicode workers with interest, but from the side-lines.  When a compromise was
reached and ISO 10646 was published, it looked easy:  ASN.1 provided two new types,
UniversalString (UCS-4 32-bit encoding), and BMPString (UCS-2 16-bit encoding) for characters
in the multi-lingual plane.  UCS-2 and UCS-4 provided escapes into encodings using the
International Register - effectively the ability to embed GeneralString encodings in UniversalString
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or BMPString.  In the interests of simplicity ASN.1 locked these escape mechanisms out in ASN.1
encodings, again giving some complaints today from sophisticated users!

A more serious problem was that just after the ink was dry on the 1994 ASN.1 publication, UTF-8
(and UTF-16), described earlier, arrived as amendments to ISO 10646 and to Unicode.
UTF8String was added to ASN.1 in the 1997 version, but at the time of writing there is no support
for UTF-16 - but some pressure to provide it!

In an attempt to "get out from under" in this character set and encoding debate, ASN.1 introduced
"CHARACTER STRING" in 1994, supported by JTC1 SC2, who included an annex (but only an
informative one!) in ISO 10646 that specified object identifier values to be used to identify
character repertoires (including restrictions to level 1 or level 2 described above) and encoding
schemes (UCS-2 and UCS-4).

The type "CHARACTER STRING" was originally intended to be very efficient, with the object
identifiers used to identify the character abstract and transfer syntaxes of character strings within a
"SEQUENCE OF CHARACTER STRING" being transmitted only once.  Unfortunately, the
mechanism used to provide this turned out to have some fatal bugs in it, and was with-drawn.  A
later mechanism of "dynamic constraints", or "run-time parameters" attempted to provide
equivalent support, but foundered because the power to complexity ratio was found to be too low.
(This is discussed further in the final clause of this chapter.)

ASN.1 also provided mappings from the names of "collections" of characters in ISO 10646 into
ASN.1 (sub)type names, and provided (sub)type names corresponding to the different "levels of
implementation" of ISO 10646, and value references for each of the characters in 10646.  (See
Section II Chapter 2.).

That is the history to-date, but watch this space!  I think the saga of character sets and encodings
is probably not yet over!

11  ANY, macros, and Information Objects - hard to keep that
short (even the heading has gone to two lines)!

Well, maybe we can keep it short - the
information object concept has been well and
fully discussed earlier, and ANY and macros
were withdrawn from ASN.1 in 1994, so
perhaps there is not really  much more to say!

The story starts with the attempted introduction of the OPERATION and ERROR syntax into
ASN.1 in 1982/83 as described above.

This attempt failed, and macros were introduced.  It turned out that what the macro notation really
provided (forget about what it appeared to provide!) was the ability to define arbitrary syntactic
extensions (but with no semantics to relate those extensions to other ASN.1 constructs) to ASN.1.
Until 1986, there were only two macros defined.  These were defined in ROSE, and (surprise,
surprise!) were called OPERATION and ERROR, and provided for any ASN.1 module that
imported these macros to write precisely the OPERATION and ERROR syntax described earlier.

Much of this (if you are reading from
front to back!) you already know.
Let's pull the historical threads
together.
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Of course, what was really happening (but this was only realised about five years later) was that
the syntax was being provided to give ROSE users a reasonably friendly syntax with which to
provide the information needed to complete the ROSE protocol - ASN.1 types and values
associated with the definition of operations and errors which would be carried in ROSE messages.
Information objects, in other words.  But whilst the macro notation gave ROSE the ability to
define the syntax it wanted, the underlying information object concepts were missing, and the use
of that syntax (to define information associated with an operation or error) had no formal link with
the ROSE messages.

Around 1986 there was a sudden explosion in the writing of new macros.  It seemed that almost
every group using ASN.1 found the need to add new syntax to the ASN.1 notation.  What were
they all doing?

Well ... nobody really knew, in terms of a global picture.  The uses of that new syntax were many
and varied, and had nothing to do with operations or errors. Moreover, tool providers were
beginning to complain about the macro notation.

It became clear that (at least formally) it was possible to write new notation which claimed to
define an ASN.1 type, but which totally failed to define the type unless accompanied by value
notation (such as value notation in a value reference assignment, or use of DEFAULT in an
element of a SET or SEQUENCE).

There were two other major problems.

The first was that ASN.1 users were given (via the macro notation) the power to define arbitrarily
complex syntactic extensions to ASN.1 using the Bacchus-Naur Form (BNF) notation.  BNF is an
extremely powerful notation that is often used to define the syntax of programming languages (and
is indeed used to formally define the syntax of the ASN.1 notation itself).  However, it is well
known to definers of programming languages and other users of BNF that if the resulting syntax is
to be computer-friendly (easily parsed by computers), then some moderately sophisticated and
complex restrictions have to be adhered to in the BNF definition.  No such restrictions were
applied to its use in ASN.1.

The second problem was that it was generally not possible to find the end of a new piece of syntax
introduced by a macro without knowing the details of that macro.  But the definition of the macro
could well follow the first use of the macro name and hence of the new syntax.

Whoops!  Tool vendors did not like it!  Some of the better tools hard-wired into their tool
knowledge of the syntax defined by macros in most known international standards, and then simply
ignored the actual syntax definition (macro definition) supplied to the tool.  It worked, but ....

Around 1988, the USA campaigned strongly within SC21 for an embargo on the writing of new
macros, and succeeded in getting a resolution passed forbidding such new macros until "either the
macro notation was replaced, or the problems with it were resolved".  It took around five years for
this demand to be satisfied, with, in fact, replacement.

Most of that time was spent trying to determine just exactly what the different groups were using
macros for, and eventually light dawned, and it became apparent that in almost all cases the
definition of extensions to the ASN.1 syntax was (as with ROSE) in order to provide users of a
protocol full of holes with a human-friendly but formal notation to specify the contents of those
holes. Use of the macro notation was (almost) always associated with use of "ANY" (and later
"ANY DEFINED BY") in ASN.1-defined messages.  (There were important exceptions, such as
the ENCRYPTED macro in X.500, where the new syntax was being used to provide a real
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extension to ASN.1 which was later satisfied using the user-defined constraint and
parameterization, described earlier in this text.)

Around this time (late 1980s early 1900s) the problems with "ANY" became more widely
recognised (although they had been flagged as early as 1985, with attempts to shore up "ANY"
with "ANY DEFINED BY".)

The attempt to understand what macros were being used for and to define an appropriate
replacement for macros and ANY went through many iterations and false starts over several years.
"Non-encodable types" and "table types" were terms that were invented and discarded.

Eventually something was almost ready, but it was complicated, and the terminology was not clear.
There was a critical meeting (I think in Seoul, Korea, and I am pretty sure it was Bancroft Scott's
first international ASN.1 meeting) in which it looked as tho' we could not find a replacement for
macros - the earlier work was just too complex.  But after a night of no sleep, solutions began to
appear.  The next day we started to discuss the Information Object Class concept, and to keep
things simple, we agreed to allow just (eg):

                        OPERATION.&Type

without any constraint applied to it.  (Something I still regret!)

But the Seoul meeting was a good one.   What looked (at the start) like the abandoning of several
years of work, ended with the Information Object Class terminology and associated concepts
pretty-well as we know them today.

Slightly later, another crucial meeting (at which probably nobody really understood the magnitude
of the decision taken) occurred around 1991 - Washington I think (I remember the room, but can't
remember the location!).  This meeting  decided to withdraw from ASN.1:

• The entire macro notation.

• The ANY and ANY DEFINED BY syntax.

These were to be replaced by the notation for defining information object classes, objects, and sets,
and the associated "information from object class" notation and the application of table and
relational constraints.

There was around this time a popular UK television series about UK Government in which a civil
servant would often say to a Cabinet Minister, "Minister, that is very brave of you."  The Minister
would wince, and almost instantly attempt to withdraw what he had been proposing.

Nobody told the ASN.1 group that they were being "very brave" in withdrawing the macro and
ANY and ANY DEFINED BY notation, but somebody should have!  I don't know whether they
(we) would have backed-off even if told, but I am sure that the extent of the adverse reaction was
not anticipated.

This was the first (and only) non-backwards-compatible change to ASN.1 in its twenty year (to-
date) history, and gave rise to the "ASN.1 1990 problem" - see below - which lingered on for
almost a decade.



348                                                                                                                           © OSS,31 May 1999

12  The ASN.1(1990) controversy

When the 1994 version of ASN.1 was
published, there was an accompanying
campaign to get people to change their
specifications from use of ANY and ANY
DEFINED BY and macros to use of the
information object concepts.  I think the
ASN.1 group felt that as this would not
change any "bits on the line", it was not a big deal!  But of course any change to a specification
(even to add a single comma) that is "stable" and not immediately about to be re-issued in a new
version is actually a costly exercise.  The gains must be apparent.

The ASN.1 group had no doubt:  there were so many flaws with the macro notation and the use of
ANY, and the information object concepts and associated notation were so much better.  Everyone
should make the transition. A transition plan was agreed.  A lot of the use of macro notation was
in the original ROSE OPERATION and ERROR macros.  So it was agreed that ROSE would
change in 1994 (it did - keeping the old macro definition as an informative annex) and that users of
ROSE would change no later than 1998.

New specifications (like SET - Secure Electronic Transactions) did, of course, like the readers of
this book(!), have no problems in adopting the new concepts - they gave important clarity in the
specification of  protocols with holes in them.

Specifications such as X.400 and X.500, which defined their own macros and were still in the
process of being extended also bettered the agreed time-frame.  They recognised the greater clarity
of the new notation, and switched to it early in the 1990s.

However, there were some groups that found the change more difficult, and resisted it for longer.
Interestingly, the embargo that the USA placed on writing new macros lead one group whose
protocol was almost 50% "ANY" (of course I exaggerate!) to define (in English) their own notation
for specifying the information objects (as we now call them) that would complete their protocol.
This notation is called "Generic Definition of Managed Objects" (GDMO), and is today supported
by its own set of tools specific to that application and that notation.  This group had the least
incentive, and took longest, to make the transition to the 1994 version of ASN.1.   (Removal of
uses of "ANY" from their protocol.)

It is normal in ISO for a revised Standard to automatically replace an earlier version.  It replaces it
in the sense that the older version can no longer be purchased, and is no longer recorded in the
catalogue of available ISO Standards, and new Standards are not allowed to refer to the old
version.

Because the definition of the ASN.1 notation in ASN.1 (1994) was not fully backwards compatible
with the ASN.1 (1990) definition (and because everyone knew that time was needed for standards
referencing ASN.1 to up-date their specifications to conform to the 1994 versions), there was
strong pressure to "retain" ASN.1 (1990).  ISO Central Secretariat agreed to this, provided a
resolution to that effect was passed by SC21 at each of its annual plenary meetings.

Of course, these resolutions became the focus of a battle-ground, with each year the ASN.1 group
increasingly strongly proposing withdrawal of ASN.1 1990, and each year some group or other
saying "we are not ready yet".  It was actually 1999 before ASN.1 (1990) was finally laid to rest!

Never, never, never produce a specification
that makes illegal what was previously
legal.  If you do, you will regret it!  But
maybe sometimes it is the only way to get
rid of a bad feature?
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This has been a salutary lesson, and if in an ASN.1 meeting anyone dares to propose a change that
would make illegal anything that could reasonably be interpreted as legal under the current
wording, there are howls of "1990, 1990", and the proposal fails!  Even if changes do not affect
the bits on the line, the notation is now sacrosanct - too many people use it, and existing
specifications can not be made retrospectively illegal.

13  The emergence of PER

13.1  The first attempt - PER-2

Pronounce that "PER minus 2"!

Work on producing better encoding rules started at about the same time as work on understanding
how macros were being used, and on mending or replacing macros, and was for a long time over-
shadowed by that work, with only a small number of people really contributing to work on new
encoding rules.

The original work (let me call this "PER-2", pronounced "PER minus 2"!) was based on using
BER and "improving" it.  The recognition was that BER often transmitted octets down the line that
a decoder (provided they had knowledge of the identical type definition to that being used by an
encoder) could totally predict.  This was what had to be sent at that point.  Therefore it did not
need to be sent.

It was also recognised that if the length field of a constructed encoding was changed to provide a
count of the number of TLVs in the encoding of the contents rather than a count of the octets in the
contents, then further octets could be removed.  And finally, it was recognised that if there were
constraints on the length of a character string field or on the size of an integer, then length fields
could be omitted.

Accept these changes to BER, and examine figure IV-2, a (slightly contrived) example of a type to
be encoded, and figure IV-3, the BER encoding of that type.

It took three attempts to get PER to where
it is today - PER-2, PER-1, and
finally real-PER.

      Example-for-encoding ::= SEQUENCE
                {first-element          INTEGER (0..127),
                 second-element         SEQUENCE
                        {string OCTET STRING (SIZE (2)),
                         name   PrintableString (SIZE (1..8) ) }
                 third-element  BIT STRING (SIZE (8) ) }

           Figure IV-2:  An example sequence to be encoded
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Looking at figure IV-3, we have 22 octets in the BER encoding.  But all except octets 5, 10-11,
13-18, and 22 (a total of 10 octets) are completely known by a decoder, and need never be
transmitted!  PER-2 said "delete them!".

(Interestingly, whilst the final real-PER specification was totally different from this early
approach, it is just these 10 octets that the current real-PER will transmit!)

The PER-2 draft said essentially:

• Do a standard BER encoding (slightly modified to provide counts of TLVs rather than
octets for constructed encodings).

• Apply the following rules to delete octets from the encoding.

• At the receiving end, apply the rules in reverse to reconstruct the original BER encoding.

• Do a standard BER decoding (again modified to use TLV counts).

Some of the rules for when you could delete octets were obvious and straight-forward, some got
quite complicated.  The reader might like to try to formulate precisely the rules that enabled us to
delete (not transmit) 12 of the 22 octets in the encoding of figure IV-3.

PER-2 was really a sort of "expert system" approach to encoding.  There were a whole raft of
rules to be applied to determine when you could or could not delete octets (with re-insertion on
receipt), and these were very ad hoc and some-how looked as if they were not complete and not
founded on any good general principles.  (They were ad hoc, and were not founded on any general
principles!)

But the text was eventually deemed complete, and sent for ballot.  The editing meeting to consider
ballot comments was in New Jersey, and was scheduled to last for one week (this being the only
business under consideration).  Something went wrong with the administration, and the copies of
the formal National Body responses to the ballot only became available by fax at 9am on the first
day of the meeting.

1       T=[Universal 16]
2       L=3 (TLV count)
3               T=[Universal 2]
4               L=1
5               V=what-ever
6               T=[Universal 16]
7               L=2 (TLV count)
8                       T=[Universal 4]
9                       L=2
10-11                   V=what-ever
12                      T=[Universal 19]
13                      L=5 (say)
14-18                   V=what-ever
19              T=[Universal 3]
20              L=2
21              V1=0 (no unused bits in last octet)
22              V2=what-ever

Figure IV-3:  The 22 octet BER encoding of figure IV-2
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Faces dropped.  Everyone knew their own country's response,  but until then they did not know
what others had said.  Every, yes every, National Body had voted "DISAPPROVE".  And none of
the comments were in any way helpful for further progress.  They more or less all said "This is
just too complicated, too ad hoc, it will never work".  None of them suggested anything that could
be done to change the PER-2 draft to make it acceptable.

The meeting broke up for lunch that day at about 11am, with many delegates (there were about a
dozen present representing five or six countries) ringing their air-lines to find out how much more
it would cost to fly back that day rather than on their scheduled flight at the end of the week.
Other delegates (myself included) retired to the bar to drown their sorrows.

After enough beer had been consumed, people started to think the unthinkable.  Why don't we just
abandon the TLV principle and start from scratch?  Forget interworking between different versions
of a standard (PER-2 didn't really provide that anyway) - how would we encode stuff, using
maximum human intelligence, to produce minimum octets on the line?   The "back of a cigarette
packet" (actually, it was a paper table napkin) design started to take shape.  (I wish now that I had
kept the napkin, but I think it was consigned to the WPB.  So much for important historical
documents!)  Come 2pm, the chairman (Bancroft, the Editor, I think) said, "Shall we convene and
get this meeting wrapped up?".  "No," was the response from the then mildly intoxicated bar group
(drunk - never!), "we might be getting somewhere."  I think the meeting eventually resumed that
day at around 4pm.  PER-1 (PER minus 1), almost PER as we now know it (but not quite) had
been borne.

The principles were in place:

• Forget about tags - abandon them!  (You had to be pretty drunk to make that statement -
TLV was a sort of mind-set it was hard to break out of.)

• Make full use of knowledge about constraints on integers and on lengths to remove length
fields whenever possible.

• How to solve the problem of SET elements being in a random order?  Fix the order!  (You
had to be a little drunk to say that too!)

• How to identify a chosen element of a CHOICE?  Encode a choice index.

• How to identify missing OPTIONAL elements in a SEQUENCE or SET?  Use a bit-map at
the head of the SEQUENCE or SET.

• How to encode a BOOLEAN - well of course, use just one bit!

• But .... octet-alignment?  Recognise it is good to have padding bits at times so that later
material which is a sequence of elements that are an integral number of octets will lie on an
octet boundary, but use the minimum number of bits without worrying about octet
alignment where that looks sensible.

There were still some elements of the "expert system" approach to this design (as there are with
current PER).  It is a fairly ad hoc decision on which fields should encode into bit-fields (no
padding bits) and which into octet-aligned-bit-fields (with padding bits).

A lot of details remained to be solved, but the meeting continued for the rest of the week, drafts
were produced and considered, and PER-1 became a reality, with later editorial work being done to
produce good text over the next few months.
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And then it fell apart again!

13.2  The second attempt - PER-1

When PER-1 was balloted, it got a much more
favorable response than PER-2, but there was
still a very strong "DISAPPROVE" vote from the
USA which said "Regrettably, after much
discussion, we have to disapprove of PER-1.
With PER-1 there is no way a version 1 system
can interwork with a version 2 system (you can't
even find the end of an encoding unless you are
both working with an identical type definition).
This stuff just isn't going to work for
International Standards.  Kill it."

This meeting was less traumatic than the last, but this "interworking" (or "extensibility" problem
as it became known) delayed the production of the final real-PER for just over twelve months.

13.3  And eventually we get real-PER

A lot of trees were cut down to provide paper
for people to describe what sorts of additions or
changes they would want to make between
version 1 and version 2 of a protocol.  The
consensus that emerged was essentially "We
only need to add things at the end."

The ellipsis was provided for people to indicate this, and the extension bit in PER provided the
encoding support.

The real-PER approach is to say essentially:

• If parts of the specification are not flagged as extensible, then encode them in an efficient
manner.

• If parts are marked extensible, but the values are values of the version 1 specification (in
the root), provide one bit to say so, but still encode them efficiently.

• If extensible parts have values outside of the root (version 2 additions), set the extensions
bit to one, and provide a length wrapper.

It is unlikely that this approach would have been developed if we had not been starting from a
design (PER-1) that did efficient encodings, with no concern for interworking.  The various
traumas on the path to PER were probably necessary to break the in-built tradition of TLV
encodings as the only way to provide version 1 to version 2 interworking.

This is not quite the end of the story!   Later, there was strong pressure to be able to add things in
the middle of sequences and sets, and version brackets were added.

Nope - you must go back to TLV.
Only TLV can provide interworking
between version 1 and version 2
systems.  It is a tried and true
technique.  Well, the last sentence is
true, but is the second?  We know now
that it is not.  In 1992 we were less
sure!

The ellipsis goes into the notation (and
the exception marker with it), and the
extension bit goes into PER.  We have
got there!
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There was also pressure from the air traffic control people to get rid of the padding bits and to
forget about octet alignment, which produced the UNALIGNED version of PER.

But these were minor problems.  The path from PER-1 to the final PER has left us with text which
is not always as precise as it should be, and in particular the integration of the extensibility and
extensions bit concept into the PER-1 text still poses some problems today (1999), with arguments
(and probably eventually corrigenda) related to obscure uses of the extensibility notation (which
fortunately no-one has yet written, and perhaps never will!).  Many of these problems were
uncovered by Olivier and myself when we started writing our books!  Fortunately, we both agreed
on what the answer should be, and I think our books both tell the same story!

14  DER and CER

(Sounds familiar?  Yup, I've used that box before
- sorry!)

The major "option" in a BER encoding is the use
of definite or indefinite lengths for constructed
encodings.  There was never agreement on which
was best, and both are allowed in the BER
specification.  There have been all sorts of rows
over the years when some profiling groups
attempted to mandate one form or the other.

Roughly speaking, for short messages, the definite length form is probably the most sensible, but
for long ones the indefinite form is to be preferred.  Leaving the option to an implementor seems
like a good idea, but of course it means that decoders have to handle both forms.

If, however, you want encoding rules with no options for the encoder (to minimise the testing
problem and to help with security-related problems, as discussed in clause 10 of Section III
Chapter 1) then you have to bite the bullet!

X.500 first produced (as about a twenty-line specification) the rules for producing a canonical
encoding of BER, and they called it a "distinguished" encoding.  It did enough of the job to cover
the types that they wanted to apply it to, but was not complete. It also (arguably) did not make
some choices in an optimal manner.

The ASN.1 group decided to produce a standard for a canonical version of BER which it decided
to call "Distinguished Encoding Rules", taking the name from X.500.

The major difference between the ASN.1 specification and the X.500 specification was that X.500
mandated use of definite length encodings, and the ASN.1 group went for indefinite length
wherever they were possible!

Major liaison statements, etc etc.  Meanwhile, workers on another standard - ODA (Office
Document Architecture) - who had very large messages to ship but who also needed canonical
encodings, liked the ASN.1 groups draft!

So the eventual up-shot was effectively two separate standards, one for DER (totally aligned with
the early X.500 text, and using definite length encodings), and one for CER ("improving" on the

Engraven on the hearts of
standardizers:  Your job is to produce
Standards.  If you can't agree, make
it optional, or better still, another
Standard.  After all, if one Standard
is good, many standards must be
better!



354                                                                                                                           © OSS,31 May 1999

original X.500 work, and using indefinite length encodings whenever possible).  Both "standards"
are, of course, published alongside BER in X.690 (ISO/IEC 8825-1).

The X.500 use of DER is mainly for certificates, becoming now heavily used in the development of
e-commerce.  (Most e-commerce activity is based on X.509 certificates, which use DER encoding.)
By contrast, the ODA work has not been widely implemented.  So whatever their relative technical
merits, DER has become the de facto standard for canonical encodings of BER, and CER is
probably dead!

15  Semantic models and all that - ASN.1 in the late 1990s

There have always been questions about
the legality of certain ASN.1 constructs
where things were syntactically
permissible, but might or might not really
be something you should allow.  The main
area of these problems is in "type
matching" rules between a value reference
and its governor. For example, with:

        intval  INTEGER ::= 7

You might ask whether you can legally write as an element of a sequence:

                [27] INTEGER DEFAULT intval

or

                INTEGER (0..127) DEFAULT intval

Of course you would expect these to be legal, yes?  But "[27] INTEGER" and "INTEGER (0..27)"
are certainly not exactly the same type as "INTEGER".  All three types do not contain exactly the
same values, and the encoding of their common values differs in either or both of BER and PER.

Again, if a value reference is defined using a certain (fairly complex) type definition, and that
value reference is then used when governed by an identical (but textually distinct) type reference,
is that legal?   And if the second textual occurrence is not quite identical to the first, by how much
can it deviate before the text becomes illegal ASN.1?

Add to these examples use of the extension marker ....

These are the problems that are being grappled with in the late 1990s, and which will probably
lead to the inclusion in the standard of models (pictures) of types as buckets containing values, and
of "value mappings" between types which are defined by textually separate pieces of notation.
Similar models/pictures are needed to cover types that have an ellipsis, and/or extensions.

The guiding principle in all this work is to make things legal if they make any sort of sense (rather
than a tight specification that makes only the most obviously correct things legal), but to end up
with a very complete specification of what is legal ASN.1.

Humans only write simple and obvious
ASN.1.   But stupid dumb computers want
to know about the legality of the most
abstruse expressions that the syntax allows.
And the computers have an important voice
in the tool vendors!  They have to be listened
to!
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Of course, the reader will guess that the pressure for this work comes from tool vendors.  They
have to write code which is required to make judgments on the legality or otherwise of stuff that no
protocol specifier in their right mind would ever write!

16  What got away?

There have been a few features of ASN.1
development that have not made it into the
current standard.  They may get resurrected, but
probably won't!

The Light Weight Encoding Rules (LWER) were fully discussed in Section III Chapter 4,  and will
not be referred to again here.

Probably the major loss was in not providing an efficient encoding for SEQUENCE OF
CHARACTER STRING, and for the encoding of a table where each column can be the choice of a
number of possible types.

In the case of CHARACTER STRING (which, if you remember, carries two object identifier
values with each encoding of this type), the original concept was to permit chains of encodings of
type CHARACTER STRING, where each encoding in any given chain had the same object
identifier values.  These values would be transmitted at the start of each chain, and then, rather
like virtual circuits in network protocol, there would be an abbreviated identification to link each
encoding into its chain.  Unfortunately, serious bugs were found in this chaining concept (because
of interaction with extensions), and it was very rapidly withdrawn within days of its initial
publication.

At the time, it was felt that another feature "run-time parameters" (also called "dynamic
constraints", because the run-time parameters could only be used in constraints) could support the
same efficiency requirement, but run-time parameters (dynamic constraints) were eventually
abandoned.

The approach was abandoned not because of any inherent problems, but simply that the market-
place (ASN.1 users) did not really seem to be demanding it, and adding a further fairly complex
feature to ASN.1 did not seem worthwhile.

What were these run-time parameters?  The idea was that a type could be a parameterised type,
but the actual parameters would be transmitted in an instance of communication rather than being
specified when the type was referenced.  This would enable any information that was common to a
SEQUENCE OF (for example the object identifiers of SEQUENCE OF CHARACTER STRING,
or the identification of the types for each column of a table) to be transmitted just once, rather than
with each element of the SEQUENCE OF.

Another abandoned feature was "global parameters".  If you have a parameterised type, it is quite
common for parameters to be passed down from the abstract syntax definition through many levels
of type definition to the point where they are eventually used.

The global parameters work was intended to improve clarity and reduce the verbosity of
specifications by providing essentially a direct path from a parameter of the abstract syntax to the
point where it would be used.

Could ASN.1 be even better?  There
are certainly further improvements that
have been discussed.  But is the added
complexity worth the gains?  The
consensus is "NO".
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If you rather like some of these ideas, get into the standardization game and see if you can bring
them back!  If you don't want to get into the standardization game, then just agree that ASN.1 is
great as it is, and we can end this chapter!

END OF CHAPTER.
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Chapter 2
Applications of ASN.1

(Or: Are you using software that does ASN.1 encodings?)

Summary:

This chapter:

• Tries to provide an indication of the application areas in which ASN.1 has been used.

• Tries to identify some of the organizations that have used ASN.1 as their chosen
specification-language.

• Uses a partial historical framework for the discussion of applications and organizations.

1  Introduction

This brief chapter outlines some of the areas in which ASN.1
has been applied.  It in no way claims to be exhaustive, and
if some groups feel offended that they have not been
mentioned, I apologise!

Equally, I have seen Web pages that say they will include their ASN.1 definitions, only to be
assured by people I trust that use of ASN.1 for that particular application was abandoned!  I hope
there are not too many errors in what follows, but I am sure there are serious omissions.

Whilst the emphasis is on different applications, the treatment is partly historical, showing the
gradual extension of the use of ASN.1 from a single application (X.400) to a wide range of
applications today.

Thus this chapter complements the previous historical chapter.

The chapter does not contain a detailed list of ISO Standard numbers and ITU-T
Recommendations and Internet RFCs, but rather gives a broad outline of application areas with the
occasional mention of an actual specification as an illustration.

For anyone interested, a more complete set of detailed references to specifications using ASN.1
can be found via the URL in Appendix 5, or in the companion text by Olivier Dubuisson (also
referenced via Appendix 5).

Most of the acronyms in this chapter can be used as input to Web search engines, and will usually
result in hits on home-pages for the relevant organizations or specifications.  This is the best way

There are more of you left
out than are included -
Sorry!
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to obtain more information if Appendix 5 does not work for you!  (Web URLs have a habit of
changing!)

There are also Web sites (access via Appendix 5 or a search) for ITU-T and ETSI and ECMA that
will give you much more information about their specifications, and in the case of ITU-T a list of
the Recommendations that use ASN.1.  (If you get interested in any of the ITU-T
Recommendations, beware - they can all be purchased and delivered on-line, but it will cost you
serious money!)

This chapter inevitably contains a lot of acronyms - every protocol and every organization has its
own acronym.  I try to spell out the acronym if it has not been used in earlier text,  but sometimes
it it seems hardly worth the effort, because the acronym is often far better known than the full title!

In many cases you will find that a document you locate via a search uses the acronym without
giving the full name.   Many, many people know these acronyms, but would have to think hard to
give you the full name, and would probably then get it wrong!  (In some cases, different Web and
other documents give different full names for the same acronyms - but clearly intend to identify the
same thing!)

So, we do our best. But if you want a challenge, see what you can find out about the following
acronyms (in the ASN.1 context).  They are given in no particular order.  Some are mentioned in
this chapter, most are not.  It is believed that they all relate to protocols or organizations that are
using ASN.1 as a specification language.  Test yourself on the following:

SET, SNMP, TCAP, CMIP, PKCS, MHS, ACSE, CSTA, NSDP, DPA, TDP, ETSI, DMH, ICAO,
IMTC, DAVIC, DSS1, PKIX, IIF, LSM, MHEG, NSP, ROS(E), FTAM, JTMP, VT, RPI, RR,
SCAI, TME, WMtp, GDMO, SMTP.

If you don't get 100% (although some could of course be mistyping!), you are not a network guru,
and can't charge $$££££$$ per hour for your advice on network matters!

If you commute between Europe and the US and are active in both communities, you stand a better
chance of meeting the challenge than those operating on only one side of the Atlantic pond.  Of
course, ASN.1 tool providers CERTAINLY know what all these acronyms mean, 'cos they are
selling their tools to support them.  But will they tell?

Well, I honestly admit that after a fair bit of research I can cover about 95% of the above list (I
have described a lot less than 95% in this chapter), but certainly not all!

If any reader can cover the lot (and preferably give a URL for further info) then an e-mail to the
my address via the link in Appendix 5 would be welcomed - but too late for this book, maybe the
second edition?

2  The origins in X.400

X.400 was originally a related set of CCITT
Recommendations covering (with gaps) X.400 to X.430.  The
X.400 specifications were intended to become the (OSI) de
facto e-mail system for the world.

Everything has a beginning!
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X.400 started off with many advantages over the Internet mail protocol (at that time it was Simple
Mail Transfer Protocol (SMTP), with no frills - frills like Multipurpose Internet Mail Extensions
(MIME) were added later).

X.400 from the start supported a variety of different types of "body part", permitting multi-media
attachments to mail, and in its 1998 version incorporated virtually all the security features of the
Military Message Handling Systems (MMHS) specifications (security features in SMTP are still
very much poorer).

SMTP was, however, enhanced with the MIME extensions to provide for the transfer of arbitrary
attachments (albeit at about twice the band-width of X.400) and Internet mail implementations
today generally do not accept mail from outside their own domain, reducing (but not eliminating)
the risks of masquerade.  (None of this work is ASN.1-based.)  But whatever the technical merits
or otherwise, we all know that SMTP-based e-mail is now the world's de facto standard, although
X.400 still plays a roll in gateways between different mail systems, and in military
communications, and has other minority followings.

ASN.1 was originally produced to support just this one X.400 specification, and is, of course, still
used in all the ongoing X.400 work.

Another important specification which was originally produced to support just X.400 was the
Remote Operations Service Element (ROSE) specification - originally just called "ROS".  Like
ASN.1, this became recognised as of more general utility, and moved into the X.200 series of
Recommendations.  (ROSE is discussed further in Section II Chapter 6).  ROSE was (and is)
totally ASN.1-based and is the foundation of many many applications in the telecommunications
area.  Its requirements were very influential in the development of the Information Object concept
and in the recognition of the need to handle "holes".  (See the previous chapter on the history of
ASN.1.)

3  The move into Open Systems Interconnection (OSI) and ISO

In the early 1980s, papers at conferences would
have titles like "OSI versus SNA" (SNA was
IBM's "Systems Network Architecture"), with
most people believing that the OSI work would
eventually become the de facto standard for
world-wide networking, but would have a battle
to unseat SNA.  Again, historically, OSI as a whole never really made it, but it was the
introduction of ASN.1 into main-stream OSI that moved ASN.1 from being a single-application
language into a tool used by many protocol specifiers.

Very soon after it was introduced from CCITT (as it then was) into ISO, ASN.1 was adopted as
the specification language of choice by every single group producing specifications for the
Application Layer of OSI and for many other OSI-related standards.  Implementations of most of
these standards are still in use today, but it is fair to say that in most cases they are in a minority
use.

Most of the OSI applications of ASN.1 were for standards in the so-called "Application Layer" of
OSI, developed by ISO/JTC1/SC16, and then (following a reorganization) by ISO/JTC1/SC21.
These covered, inter alia, standards for remote database access, for transaction processing, for file
transfer, for virtual terminals, and so on.

Rapid expansion to take over the world
through OSI - supposedly!  But also
take-up by several other ISO
Technical Committees.
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The ASN.1 concepts of a separation of abstract and transfer syntax fitted very well with the so-
called "Presentation Layer" of OSI for protocols running over the OSI stack and using the
Presentation Layer to negotiate the transfer syntax to be used for any given abstract syntax.

Interestingly, however, ASN.1 was also used to define the Presentation Layer protocol itself -
probably the first use of ASN.1 for a protocol which did not run over the OSI Presentation Layer
(many others were to follow).

There was even a draft circulated showing how the OSI Session Layer (the layer below the
Presentation Layer) could be defined (more clearly, and in a machine-readable format) using
ASN.1.  This was accompanied by a draft of a "Session-Layer-BER" which was a minor change to
BER and which if applied to the ASN.1 definition would produce exactly the bits on the line that
the Session Protocol Standard currently specified.  But the Session Layer specifications were
complete and stable by then, so the draft was never progressed.

A similar situation arose with the Generic Definition of Managed Objects (GDMO) - see Clause 8
below, where an equivalent notation using Information Object Classes and "WITH SYNTAX" was
identified in a circulated draft - from Japan - but was never progressed because the GDMO work
was by then stable and quite mature.

ASN.1 has been used in many other ISO Technical Committees, in areas such as banking, security,
protocols for control of automated production lines, and most recently in the development of
protocols in the transportation domain for "intelligent highways".  These protocols are often
(usually) not carried over the OSI stack, and have served to show the independence of ASN.1 from
OSI, despite its early roots in the OSI work.

A recent example of such use is for the definition (by ISO/TC68) of messages passing between an
Integrated Circuit credit card and the card accepting device.

4  Use within the protocol testing community

As well as protocol specifications, the OSI world started the
idea of standardized tests of protocol implementations.  These
test sequences are, of course, protocols in their own right,
where a testing system sends messages to an implementation
under test, and assesses the responses it gets.  The Tree and
Tabular Combined Notation (TTCN) is the most commonly
used notation for this purpose, and ASN.1 is embedded within this notation for the definition of
data structures.

Closely related to the TTCN application is the use of ASN.1 within another ITU-T formal
description technique, System Description Language (SDL).

The European Telecommunications Standards Institute (ETSI) has been a major actor in the
development of testing specifications using these notations.

You don't just want a
standardized protocol, you
want standardized tests of
implementations!



© OS, 31 May 1999 361

5  Use within the Integrated Services Digital Network (ISDN)

In the 80's, Integrated Services Digital
Network (ISDN) was the great talking
point.  It grew out of the digitisation of the
telephone network.

The telephone network in most advanced countries is now entirely digital apart from the so-called
"local loop" between homes and the local telephone exchange, which in the majority of cases
remains analogue.

ISDN provided, using the existing local loops between homes and a local telephone exchange, two
so-called "B-channels" each capable of carrying a telephone call or a 64 Kbps data connection, and
a "D-channel" (used for signalling between the subscriber and the exchange).  ISDN became
widely available to telephone subscribers, but its main application was (and still is today - 1999)
the use of the two B-channels together to provide a 128 Kbps data channel for video-conferencing
over the telephone network.

Within ISDN, many so-called "supplementary services" (for example, Call Back to Busy
Subscriber) were implemented using the D-channel, and ASN.1 (with BER encodings) was chosen
to define the protocol for these services.

6  Use in ITU-T and multimedia standards

ASN.1 was, of course, first introduced to ITU-T
through X.400 and OSI, but was rapidly taken up by
many other standardization groups within ITU-T (then
CCITT).

Uses of ASN.1 within ITU-T can be found in:

• The G-series recommendations for speech encoding and silence compression.

• The H-series for multimedia (audio-visual) communications, including moving video
coding for low bit rate communication, and specifications being implemented by the
Interactive Multimedia Teleconferencing Consortium (IMTC).

• The M-series for test management in ATM.

• The Q-series for a host of specifications related to ISDN and Intelligent Networks (IN).

• The T-series for group 3 facsimile and for MHEG communications.

• The V-series for audio-visual terminal communication.

• The Z-series for use within SDL (described above) and within GDMO (described in Clause
8 below).

• And of course, in the X-series for Recommendations that originated in the OSI work.

Probably the first application of ASN.1
outside of the main OSI work.

Widespread use of ASN.1
throughout many parts of
ITU-T continues to this day.
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Regarding the H-series, the most important of these Recommendations is perhaps the H.323 series
for audio, video, and data communication across the Internet (including video-conferencing,
interactive shopping, network gaming, and many other multi-media applications - check out the
H.323 Web site for further details).  Other specifications in the H.320 series address multimedia
communication over both narrow-band and broad-band (ATM) ISDN and PSTN communications.
These Recommendations seem set to become de facto standards for multi-media communication
that will operate over a wide range of network infrastructures.

It is these Recommendations that cause many familiar products to have ASN.1 (PER in this case)
encoders embedded wtihin them, so if you  use any of these products, you are using ASN.1
(encodings)!  Examples of such products are Microsoft NetMeeting, Intel VideoPhone, PictureTel
software, and so on and so on.

7  Use in European and American standardization groups

There are three European standardization groups worth
mentioning where ASN.1 has been quite heavily used (no
doubt there are others).  The first two carry the name
"European" in their title, but they all contribute standards to
the world-wide community.  These are the European
Computer Manufacturers Association (ECMA), the
European Telecommunications Standards Institute (ETSI), and the rather more recent Digital
Audio Visual Council (DAVIC).  (DAVIC is Europe-based, but would justifiably claim to be a
world-wide consortium.)

ECMA has long worked on OSI-related standards for input into OSI (but also in broader areas -
for example, it had significant input into the initial IEEE 802 Standard).  It has also produced the
ASN.1-based Computer Supported Telecommunications Applications (CSTA) specification for
communication between telephone switches and end-user computers.  Initial deployment of CSTA
has been in support of large Call Centres - an important development in communications in the late
1990s.  As is normal with ECMA specifications, the work has been input to ISO for international
standardization.

ETSI is primarily concerned with European variants of ITU-T Recommendations and with the
development of telecommunications specifications for input into ITU-T.  It has also been active in
the development of specifications based on TTCN (which has ASN.1 embedded within it).  There
is close liaison between ECMA and ETSI on telecommunications standards, and with ITU-T.

DAVIC is a consortium of 157 companies and government agencies from 25 countries promoting
video-conferencing.  Its specifications are input to ISO for international standardization.

There are also a number of standards groups and consortia in the USA that have used ASN.1 in
their specifications.  Frequently, but not always, such work feeds into international
standardization.

Worth mentioning (but this list is very incomplete and a bit random - it is the ones I have heard
about) are:

• The ANSI X9 committees concerned with Financial Industry Standardization (Funds
Transfer and EDI, for example), feeding into ISO/TC68.

Many sub-international (to
coin a phrase) groups that
are really international actors
have used ASN.1.
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• The American Chemical Society for the exchange of chemical information and DNA
sequences (for the Web site, see links via Appendix 5 to the National Centre for Biological
Information (NCBI)).

• Many Federal Information Processing Standards (FIPS) concerned with security matters,
for example, FIPS PUB 188 on Standard Security Labels for Information Transfer - the
Standard Security Label is defined as an ASN.1 type:  "SET OF NamedTagSet" where
"NamedTagSet" is .... etc.

• The SET consortium (see Clause 9 below).

8  Use for managing computer-controlled systems

Another major "invention" from the OSI work was the concept
of "managed objects" (devices that are interrogated, tested,
configured, reset, etc by remote communications).  This came
out of the work on Common Management Information
Services/Protocol (CMIS/CMIP), which produced a model of
such objects (identified by ASN.1 object identifiers) having
attributes (which were ASN.1 types identified by further ASN.1 object identifiers).  "Management"
was essentially performed by reading from or writing to these "attributes" (using CMIP) which
were, as it were, on the surface of the managed objects, and provided external visibility and control
of the object.

When the CMIP standard was first published, it was a protocol full of "holes" - not a single
managed object and its attributes had been defined at that stage!  A notation was clearly needed to
allow people to define (preferably in a machine-readable way) managed objects.  An ASN.1 macro
might well have been used to define that notation, but by then there was an embargo on writing
new macros, and the replacement Information Object Class work was still in its infancy.  So
Generic Definition of Managed Objects (GDMO) was defined (in English) as a notation for
specifying the necessary details about managed objects, with ASN.1 as an embedded notation
within GDMO.

In the Internet world, the concepts of CMIS/CMIP were adopted, and while work was still
continuing on the development of CMIS/CMIP, an RFC was produced for Simple Network
Management Protocol (SNMP).   Initially, this was stated to be a temporary solution until
CMIS/CMIP matured, but like most temporary solutions, it became rather permanent, and has
today a greater market share of management of remote devices than does CMIS/CMIP.

Like CMIS/CMIP, SNMP also uses ASN.1, but in a very cut-down form, and with considerable
restrictions on the form of ASN.1 types that can be used to define the values to be set or read on
managed objects.  This did, however, represent the first real penetration of ASN.1 into the Internet
standardization community.

CMIS/CMIP was originally designed to control implementations of the OSI stack in network
switches and remote hosts, but (like SNMP) it is increasingly used today to manage remotely
anything that is computer controlled.  So applications of management protocols can include the
steering of telescopes or radar dishes, or even the switching on and off of washing machines or
ovens!  (But I am not sure the latter are yet a reality.)

If it's controlled by a
computer, you probably
manage it remotely using
ASN.1-based exchanges.
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9  Use in PKCS and PKIX and SET and other security-related
protocols

Let's just get the acronyms in the title out of the
way!  PKCS is Public Key Cryptographic
Standards, PKIX is Public Key Infrastructure
(X.509), and SET is Secure Electronic
Transactions (a little more detail on these
follows below).

X.500 is one of the OSI Standards that still has significant support, and its use of ASN.1 in the
OSI work has led to adoption of ASN.1 in almost all security-related protocols.

X.500 was (and is) an ISO and ITU-T Standard and Recommendation, but the Light-Weight
Directory Access Protocol (LDAP), which is a functional subset of X.500 is an Internet RFC, and
is rapidly becoming the de facto standard for access to Directory services, leaving X.500 proper
for use "behind the scenes" to link local LDAP servers to provide a world-wide Directory service.
LDAP uses the ASN.1 notation to define its messages, but specifies a text encoding for values of
the (limited) subset of ASN.1 that it uses (see later discussion in Clause 10 on preferences for text-
based protocols among Internet specifiers).

Whilst X.500 was primarily designed to provide a world-wide Directory service, allowing look-up
of a very wide variety of information with a world-wide search, it also provided the first standard
(X.509) for certificates (which were - and are, of course, an ASN.1 type).

The basic certificate concept is that a Certification Authority (CA) will provide a public and
private key pair (usually for some commercial fee) to an applicant, and will also provide an
electronic bit-pattern (a certificate) that is encrypted using the public key of the CA.  The
certificate is an ASN.1 type that provides an association between the public key issued to the
applicant and some property of the applicant (name, company registration number, etc).
Certificates cannot be forged provided the CA keeps its own private key secure.  However, anyone
knowing (for absolutely sure) the public key of the CA, can decrypt the certificates it issues and
hence "believe" the public key of the organization or person that the certificate contains - and
hence apply some degree of "trust" to that organization or person (and to messages or signatures
that decrypt to produce valid hash values using that public key).  Of course, the public key of the
CA is usually obtained from another certificate issued by a "higher" CA, whose public key is
obtained from another certificate issued by .... and so on, until, .... well, .... the Netscape public
key is usually built into your Web browser software!  (Which of course you obtained from a
trustworthy source!).

This process of obtaining a public key from one certificate to unlock another certificate to get a
public key which unlocks another certificate etc is called certificate chaining, and originally people
expected just one or two top-level CAs in the entire world, with their public keys really public -
perhaps advertised daily in the newspapers!

But then just about every national government decided it wanted one of its agencies to be a top-
level CA, and many companies also decided to be their own CA for internal use.  And suddenly the
problem of distribution of public keys and of degrees of trust got a lot more complicated.

PKIX stands for Public Key Infrastructure (X.509), and is a set of Internet RFCs and Draft RFCs
which specify how CAs should operate. For example, PKIX 4 specifies the form of a Certification
Policy Statement (CPS) which all conforming CAs should make available to the public.  The CPS
says, for example, that (before issuing a certificate) the CA should verify individual names by

The wide-spread adoption of X.509
(ASN.1-based) certificates has made
ASN.1 the dominant specification
technique in security work.
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requiring a photo-copy of a passport, or an actual passport, or a birth certificate, or (for a
company in the UK) has checked that the Registered Office exists, as registered with Companies
House, or ...  You get the idea.  The certificate they issue asserts that there is some association
between the public key it contains and some further information about an individual or company.
How much trust can you place in that assertion?  The CPS helps you to determine that.

Several parts of PKIX use ASN.1, fully and straight-forwardly.

PKCS stands for Public-Key Cryptographic Standards.  These are standards produced by a
consortium of RSA Data Security and its major licensees, including Microsoft, Apple, Lotus, Sun,
Novell, and MIT.  PKCS uses ASN.1 as its notation for defining data-structures and their
encoding.

Another important security-related protocol is Secure Electronic Transactions (SET), produced by
a consortium of MasterCard, Visa, and other parts of the computer and banking industries.  SET is
designed to support electronic commerce in a fully secure manner, and hence uses X.509
certificates, and is itself about 60 pages of  ASN.1 (with many more pages of supporting text).

When SET certificates are stored on smart-cards (because of the limited memory available on
smart-cards) PER encoding is likely to be used with an ASN.1 datatype called a compressed
certificate.

In general, the use of ASN.1 in X.509 has led most security-related protocols to use ASN.1.

10  Use in other Internet specifications

We have already discussed PKCS and PKIX and SNMP.
ASN.1 (with PER) was considered for use in the latest version
of HTTP, but instead an ASN.1-like notation called "pseudo-C
was invented.

In general, Internet specifiers try to keep protocol specifications as simple as possible and to make
it easy for implementors to operate without specialised tools, or using only tools that are in the
public domain.

This tends to lead to protocols that in the end are simply lines of ASCII text (usually defined using
BNF), or, if ASN.1 is used, to use of a subset of the ASN.1 notation.

The Web is very much part of the Internet, but the World-Wide Web Consortium (W3C) now has
very much a life of its own.

It is within the W3C forum that work is on-going to marry XML and ASN.1 through the definition
of XML Encoding Rules (XER).  This work is recent, and was mentioned also in Section III
Chapter 3.

Yes, even here we see some
use of ASN.1!
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11  Use in major corporate enterprises and agencies

It is known that a number of house-hold name corporations and
national and international agencies have made use of (and are still
using) ASN.1 and its encoding rules to support communications
activities within their corporations and agencies.

However, attempts to obtain more details for publication in this book met with an almost universal
rejection, due to concerns about commercial confidentiality of the applications.  With regret,
therefore, I have decided to make no mention of any specific name of a commercial organization
unless the information about their use of ASN.1 appears on the Web.

I will, however, mention one agency, and this is the International Civil Aviation Organization
(ICAO).

The ICAO is worth mentioning because it was the first organization to take-up (and to help in the
development of) the Packed Encoding Rules.  PER encodings were described in ICAO
specifications long before the actual ASN.1 specifications were finally ratified, and use of ASN.1
and PER is fundamental to their Aeronautical Telecommunication Network (ATN).

12  Conclusion

ASN.1 has come a long way from the days when it provided
support for just one application (X.400).

It is now used to a significant extent by all the main specifiers of protocols, and in some (but not
all) cases is the dominant specification language.  Usually use of the notation is associated with
use of the ASN.1-defined encodings, with a few exceptions.

If you were to wave a magic wand and eliminate from the world all messages that are encodings of
ASN.1-defined values, disaster would certainly strike on a scale far beyond any that the most
pessimistic have described for possible effects of the Y2K (year 2000) computer bugs.  (Or any
that actually occurred if you are reading this book post-2000!)

Aircraft would collide, mobile phones would cease to work, virtually all telecoms and network
switches would be unmanageable and unmaintainable and would gradually die, electric power
distribution systems would cease to work, and to look a little further ahead before we wave our
magic wand, smart-card-based electronic transactions would fail to complete and your washing
machine might fail to work!  But worst of all, your NetMeeting with your newly betrothed would
suddenly collapse and your life would become a misery!

It is on that happy note that we will conclude this book!

Sorry - I can't tell
you about those!

We'll end with a tale of
world-wide catastrophe!
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1  The Wineco protocol scenario

Many of the examples in this book are based on the development of the "Wineco protocol".  This is
a fictitious protocol,  used simply to illustrate various parts of ASN.1.  The first parts of it appear
in Figure 13 of Section 1 Chapter 2,  and a full copy of the final protocol is given in Appendix 2
below.

Wineco is a company selling wine from a variety of outlets,  and owning two warehouses,  one
northern and one southern.  Initially all outlets were in the UK only (where the name of an outlet
could be supported by the ASCII character set),  but later Wineco extended to overseas territories,
where a larger character set was needed.

In Figure 13 we see one of the messages we use in the protocol, "Order-for-stock", to request a
number of cases of particular types of wine with a specified urgency.  We also see the form of a
"Branch-identification" type.

In Section 1 Chapter 3 we add the necessary module headers,  and some extensibility markers with
an insertion point not at the end.  Later we turn it into a multi-module specification with "common
types" in one module,  the top-level type in another,  and the ordering protocol message "Order-for-
stock" in a third.  We also introduced a second top-level message in Figure 21, "Return-of-sales",
which provides for a report on the sales that have been made within the last period.

In Chapter 4 of Section 1 we populated the "Return-of-sales" message in a hopefully plausible
way,  but really solely in order to illustrate the remaining ASN.1 basic data types!  Exception
markers and exception handling are introduced in this Chapter.  "Return-of-sales" and the "Report-
item" type it uses are used as the main example for illustration of the output from an ASN.1-
compiler-tool,  given in Appendix 3 for C and in Appendix 4 for Java.

"Return-of-sales" is also used to illustrate the ASN.1 value notation in at the Section I Chapter 4
(Figure 23).

The next use of our example is in Chapter 3 of Section II,  when we decide to define a "basic
class" protocol as a strict subset of our "full class" protocol, both for ordering and for return of
sales. Here we have also added a third top-level message as we enter the digital-cash age! We are
up-loading the contents of our electronic till using an enhanced protocol.

The final major extension is when we decide (in Section II Chapter 6 to change over to use of a
Remote Operations metaphor,  with four defined operations.  This leads to two further modules -
one to define the Remote Operations PDU (which in the real world would have been imported from
the Remote Operations Service (ROSE) Standard,  and one to define the Wineco operation
Information Objects.
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2  The full protocol for Wineco

This appendix gives the final version of the specification of the Wineco protocol in a form that is
syntactically correct and complete.

Wineco-common-top-level
       {joint-iso-itu-t international-organization(23) set(42)
         set-vendors(9) wineco(43) modules(2) top(0)}
    DEFINITIONS
         AUTOMATIC TAGS ::=
    BEGIN

    EXPORTS ;
    IMPORTS Order-for-stock FROM
        Wineco-ordering-protocol
       {wineco-OID modules(2) ordering(1)}
            Return-of-sales FROM
        Wineco-returns-protocol
       {wineco-OID modules(2) returns(2)};

    wineco-OID OBJECT IDENTIFIER ::=
       {joint-iso-itu-t international-organization(23) set(42)
           set-vendors(9) wineco(43)}

    wineco-abstract-syntax  ABSTRACT-SYNTAX ::=
              {Wineco-protocol IDENTIFIED BY
                               {wineco-OID abstract-syntax(1)}
                                 HAS PROPERTY
                                 {handles-invalid-encodings}
                               --See clause 45.6 --   }

    Wineco-protocol ::= CHOICE
        {ordering  [APPLICATION 1] Order-for-stock,
         sales     [APPLICATION 2] Return-of-sales,
         ... ! PrintableString : "See clause 45.7"
        }

END
--New page in published spec.
Wineco-ordering-protocol
  {joint-iso-itu-t international-organization(23) set(42)
         set-vendors(9) wineco(43)modules(2) ordering(1)}
    DEFINITIONS
         AUTOMATIC TAGS ::=
    BEGIN

    EXPORTS Order-for-stock;

    IMPORTS OutletType,  Address,  Security-Type FROM
                Wineco-common-types
             {wineco-OID modules(2) common (3)};

    wineco-OID OBJECT IDENTIFIER ::=
             {joint-iso-itu-t international-organization(23) set(42)
                   set-vendors(9) wineco(43)}

    Order-for-stock ::= SEQUENCE
        {order-no       INTEGER,
         name-address   BranchIdentification,
         details        SEQUENCE OF
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                        SEQUENCE
                 {item      OBJECT IDENTIFIER,
                  cases     INTEGER},
         urgency        ENUMERATED
                 {tomorrow(0),
                  three-day(1),
                  week(2)}  DEFAULT week,
         authenticator Security-Type}

     BranchIdentification ::= SET
         {unique-id  OBJECT IDENTIFIER,
          details    CHOICE
              {uk  [0] SEQUENCE
                     {name      VisibleString,
                      type      OutletType,
                      location  Address},
               overseas [1] SEQUENCE
                      {name    UTF8String,
                       type    OutletType,
                       location Address},
               warehouse [2] CHOICE
                    {northern  [0] NULL,
                     southern  [1] NULL} } }

    END
--New page in published spec.
   Wineco-returns-protocol
   {joint-iso-itu-t international-organization(23) set(42)
         set-vendors(9) wineco(43) modules(2) returns(2)}
    DEFINITIONS
        AUTOMATIC TAGS ::=
    BEGIN

    EXPORTS Return-of-sales;

    IMPORTS OutletType,  Address,  Security-Type FROM
                Wineco-common-types
             {wineco-OID modules(2) common (3)};

    wineco-OID OBJECT IDENTIFIER ::=
       {joint-iso-itu-t international-organization(23) set(42)
         set-vendors(9) wineco(43)}

    Return-of-sales ::= SEQUENCE
     {version       BIT STRING
               {version1 (0),  version2 (1)} DEFAULT {version1},
      no-of-days-reported-on  INTEGER
       {week(7),  month (28),  maximum (56)} (1..56) DEFAULT week,
      time-and-date-of-report  CHOICE
                 {two-digit-year  UTCTime,
                  four-digit-year GeneralizedTime},
               -- If the system clock provides a four-digit year,
               -- the second alternative shall be used.  With the
               -- first alternative the time shall be interpreted
               -- as a sliding window.
      reason-for-delay  ENUMERATED
            {computer-failure,  network-failure,  other} OPTIONAL,
               -- Include this field if and only if the
               -- no-of-days-reported-on exceeds seven.
      additional-information  SEQUENCE OF PrintableString OPTIONAL,
               -- Include this field if and only if the
               -- reason-for-delay is "other".
      sales-data  SET OF Report-item,
      ... ! PrintableString : "See wineco manual chapter 15" }
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    Report-item ::= SEQUENCE
    {item                 OBJECT IDENTIFIER,
     item-description     ObjectDescriptor OPTIONAL,
         -- To be included for any newly-stocked item.
     bar-code-data        OCTET STRING,
         -- Represents the bar-code for the item as specified
         -- in the wineco manual chapter 29.
     ran-out-of-stock  BOOLEAN DEFAULT FALSE,
         -- Send TRUE if stock for item became exhausted at any
         -- time during the period reported on.
     min-stock-level      REAL,
     max-stock-level      REAL,
     average-stock-level  REAL
       -- Give minimum,  maximum,  and average levels during the
       -- period as a percentage of normal target stock-level-- }

     wineco-items OBJECT IDENTIFIER ::=
     {joint-iso-itu-t international-organization(23) set(42)
         set-vendors(9) wineco(43)stock-items (0)}

END

Wineco-common-types
      {joint-iso-itu-t internationalRA(23) set(42)
         set-vendors(9) wineco(43) modules(2) common(3)}
   DEFINITIONS
        AUTOMATIC TAGS ::=
   BEGIN

   EXPORTS  OutletType,  Address,  Security-Type;
--   IMPORTS Security-Type FROM
--       SET-module
--       {joint-iso-itu-t internationalRA(23) set(42) module(6) 0};
--Removed for this appendix to avoid needing the import,
--and replaced by the type below.

Security-Type ::= SEQUENCE{
        algorithm  OBJECT IDENTIFIER,
        encoding   OCTET STRING}

--OutletType is not populated in main text--
   OutletType ::=  SEQUENCE
        {type  ENUMERATED{mail-order,  retail},
         description CHARACTER STRING}

--Address is not populated in main text--
   Address ::= SEQUENCE
        {name  UTF8String,
         town  UTF8String,
         country UTF8String}

   END
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3  Compiler output for C support for
the Wineco protocol

This appendix contains the text produced by the "OSS ASN.1 Tools" product to provide support
for a C implementation of "Return-of-sales" and "Report-item" in our Wineco protocol.  (Some of
this text is generated just for wineco, some is generic definitions obtained from an include file, for
example "GeneralizedTime" and "ossBoolean"):

typedef struct {
  short          year;   /* YYYY format when used for GeneralizedTime */
                         /* YY format when used for UTCTime */
  short          month;
  short          day;
  short          hour;
  short          minute;
  short          second;
  short          millisec;
  short          mindiff;  /* UTC +/- minute differential     */
  ossBoolean     utc;      /* TRUE means UTC time             */
} GeneralizedTime;

typedef GeneralizedTime UTCTime;

typedef struct ObjectID {
    unsigned short  length;
    unsigned char   *value;
} ObjectID;

typedef struct Report_item {
    unsigned char   bit_mask;
# define      ran_out_of_stock_present 0x80
    ObjectID        item;
    char            *item_description;  /* NULL for not present */
    struct {
        unsigned int    length;
        unsigned char   *value;
    } bar_code_data;
    ossBoolean      ran_out_of_stock;
             /* ran_out_of_stock_present not set in
              * bit_mask implies value is FALSE */
    double          min_stock_level;
    double          max_stock_level;
    double          average_stock_level;
} Report_item;

typedef struct Return_of_sales {
    unsigned char   bit_mask;
#       define      version_present 0x80
#       define      no_of_days_reported_on_present 0x40
#       define      reason_for_delay_present 0x20
#       define      additional_information_present 0x10
    unsigned char   version;
                        /* version_present not set in bit_mask
                         * implies value is { version1 } */
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#       define      version1 0x80
#       define      version2 0x40
    unsigned short  no_of_days_reported_on;
                        /* no_of_days_reported_on_present not set
                         * in bit_mask implies value is week */
#       define      week 7
#       define      month 28
#       define      maximum 56
    struct {
        unsigned short  choice;
#           define      two_digit_year_chosen 1
#           define      four_digit_year_chosen 2
        union {
            UTCTime         two_digit_year;
                        /* to choose, set choice to
                         * two_digit_year_chosen */
            GeneralizedTime four_digit_year;
                        /* to choose, set choice to
                         * four_digit_year_chosen */
        } u;
    } time_and_date_of_report;
    enum {
        computer_failure = 0,
        network_failure = 1,
        other = 2
    } reason_for_delay;
                        /* optional; set in bit_mask
                         * reason_for_delay_present
                         * if present */
    struct _seqof1 {
        struct _seqof1  *next;
        char            *value;
    } *additional_information;
                        /* optional; set in bit_mask
                         * additional_information_present if present */
    struct _setof1 {
        struct _setof1  *next;
        Report_item     value;
    } *sales_data;
} Return_of_sales;
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4 Compiler output for Java support for
the Wineco protocol

This appendix contains the text for Java support for the "Return-of-sales" and the "Report-item"
types in the Wineco protocol.  This is a part of the output produced by the "OSS ASN.1 Tools"
product when it is fed with the Wineco modules.  This is a bit more bulky than Annex 3 - does that
say anything?  Whoops - BAD STATEMENT - no way can one appear to be criticising Java!  This
is more than Figure 999 stuff!.  The Java code is bulkier because it contains all the methods for
setting and reading fields and for inserting and deleting items in SEQUENCE OF, so it does rather
more than the C code in Appendix 3.  If you don't know Java, you will certainly want to ignore
this appendix.  Even if you do know Java, you will probably only want to look at a few sample
classes and methods.  Here is the Java code:

package wineco.wineco_returns_protocol;
import com.oss.asn1.*;
import com.oss.util.*;
import wineco.*;
import wineco.wineco_common_types.*;

public class Return_of_sales extends Sequence {

    /**
    The default constructor.
    */
    public Return_of_sales() {}

    protected ASN1World getASN1World()
                  { return wineco.Wineco.cASN1World; }
    protected int getTypeIndex()
           { return Wineco_returns_protocol.Return_of_sales_PDU; }

    /**
    Construct from a IAAPI Value Reference.
    */
    public Return_of_sales(ASN1World world, int index)
             { ASN1Module.getValueReference(world, this, index); }

    /**
    Construct with components.
    */
    public Return_of_sales(
        Version version,
        No_of_days_reported_on no_of_days_reported_on,
        Time_and_date_of_report time_and_date_of_report,
        Reason_for_delay reason_for_delay,
        Additional_information additional_information,
        Sales_data sales_data)
    {
        SetVersion(version);
        SetNo_of_days_reported_on(no_of_days_reported_on);
        SetTime_and_date_of_report(time_and_date_of_report);
        SetReason_for_delay(reason_for_delay);
        SetAdditional_information(additional_information);
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        SetSales_data(sales_data);
    }

    /**
    Construct with required components.
    */
    public Return_of_sales(
        Time_and_date_of_report time_and_date_of_report,
        Sales_data sales_data)
    {
        SetTime_and_date_of_report(time_and_date_of_report);
        SetSales_data(sales_data);
    }

    protected void initComponents()
    {
        mComponents[0] = new Version();
        mComponents[1] = new No_of_days_reported_on();
        mComponents[2] = new Time_and_date_of_report();
        mComponents[3] = new Reason_for_delay();
        mComponents[4] = new Additional_information();
        mComponents[5] = new Sales_data();
    }

    // Instance initializer
    {
        mComponents = new AbstractData[6];
        mPresentBits = new java.util.BitSet(mComponents.length);
    }

    // Methods for field "version"
    public Version getVersion()
    {
        return (Version)mComponents[0];
    }
    public void SetVersion(Version version)
    {
        mComponents[0] = version;
        SetComponentPresent(0);
    }
    public void SetVersionToDefault() {SetComponentAbsent(0); }
    public boolean hasDefaultVersion() { return componentIsPresent(0); }
    public boolean hasVersion() { return componentIsPresent(0); }
    public void deleteVersion() { SetComponentAbsent(0); }

    public static class Version extends BitString {
        /**
        The default constructor.
        */
        public Version() { super(new byte[1], 2); }

        /**
        Construct Bit String from a byte array and significant bits.
          @param value the byte array to set this object to.
          @param sigBits the number of significant bits.
        */
        public Version(byte[] value, int sigBits)
                         { super(value, sigBits); }

        protected ASN1World getASN1World()
                    { return wineco.Wineco.cASN1World; }

        // Named list definitions.
        public static final int version1 = 0;
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        public static final int version2 = 1;

    } // End class definition for Version

    // Methods for field "no_of_days_reported_on"
    public No_of_days_reported_on getNo_of_days_reported_on()
    {
        return (No_of_days_reported_on)mComponents[1];
    }
    public void SetNo_of_days_reported_on
          (No_of_days_reported_on no_of_days_reported_on)
    {
        mComponents[1] = no_of_days_reported_on;
        SetComponentPresent(1);
    }
    public void SetNo_of_days_reported_onToDefault()
                   {SetComponentAbsent(1); }
    public boolean hasDefaultNo_of_days_reported_on()
                   { return componentIsPresent(1); }
    public boolean hasNo_of_days_reported_on()
                   { return componentIsPresent(1); }
    public void deleteNo_of_days_reported_on()
                   { SetComponentAbsent(1); }

    public static class No_of_days_reported_on extends INTEGER {

        /**
        The default constructor.
        */
        public No_of_days_reported_on() {}
        public No_of_days_reported_on(short value) { super(value);}
        public No_of_days_reported_on(int   value) { super(value);}
        public No_of_days_reported_on(long  value) { super(value);}

        protected ASN1World getASN1World()
                { return wineco.Wineco.cASN1World; }

        // Named list definitions.
        public static final No_of_days_reported_on week =
                        new No_of_days_reported_on(7);
        public static final No_of_days_reported_on month =
                        new No_of_days_reported_on(28);
        public static final No_of_days_reported_on maximum =
                        new No_of_days_reported_on(56);
        private final static No_of_days_reported_on cNamedNumbers[] =
                        {week, month, maximum};
        protected final static long cFirstNumber = 7;
        protected final static boolean cLinearNumbers = false;
        protected INTEGER[] getNamedNumbers() { return cNamedNumbers;}
        protected boolean hasLinearNumbers() { return cLinearNumbers;}
        protected long getFirstNumber() { return cFirstNumber;}
    } // End class definition for No_of_days_reported_on

    // Methods for field "time_and_date_of_report"
    public Time_and_date_of_report getTime_and_date_of_report()
    {
        return (Time_and_date_of_report)mComponents[2];
    }
    public void SetTime_and_date_of_report
                (Time_and_date_of_report time_and_date_of_report)
    {
        mComponents[2] = time_and_date_of_report;
    }
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    public static class Time_and_date_of_report extends Choice {

        /**
        The default constructor.
        */
        public Time_and_date_of_report() {}

        protected ASN1World getASN1World()
                { return wineco.Wineco.cASN1World; }

        /**
        Construct from a IAAPI Value Reference.
        */
        public Time_and_date_of_report(ASN1World world, int index)
   {ASN1Module.getValueReference(world, this, index); }

        public static final  int  two_digit_year_chosen = 1;
        public static final  int  four_digit_year_chosen = 2;

        // Methods for field "two_digit_year"
        public static Time_and_date_of_report
                createTime_and_date_of_reportWithTwo_digit_year
                        (UTCTime two_digit_year)
                {Time_and_date_of_report __object =
                        new Time_and_date_of_report();
                __object.SetTwo_digit_year(two_digit_year);
                return __object;
        }
        public boolean hasTwo_digit_year() {
            return getChosenFlag() == two_digit_year_chosen;
        }
        public void SetTwo_digit_year (UTCTime two_digit_year) {
            SetChosenValue(two_digit_year);
            SetChosenFlag(two_digit_year_chosen);
        }
        // Methods for field "four_digit_year"
        public static Time_and_date_of_report
                createTime_and_date_of_reportWithFour_digit_year
                         (GeneralizedTime four_digit_year)
                {Time_and_date_of_report __object =
                        new Time_and_date_of_report();
                __object.SetFour_digit_year(four_digit_year);
                return __object;
        }
        public boolean hasFour_digit_year() {
            return getChosenFlag() == four_digit_year_chosen;
        }
        public void SetFour_digit_year
        (GeneralizedTime four_digit_year) {
            SetChosenValue(four_digit_year);
            SetChosenFlag(four_digit_year_chosen);
        }
        // Method to create a specific choice instance
        protected AbstractData createInstance(int chosen) {
            switch(chosen) {
                case two_digit_year_chosen: return
                                        new UTCTime();
                case four_digit_year_chosen: return
                                        new GeneralizedTime();
                default: throw
                        new InternalError("Choice.createInstance()");
            }
        }
    } // End class definition for Time_and_date_of_report
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    // Methods for field "reason_for_delay"
    public Reason_for_delay getReason_for_delay()
    {
        return (Reason_for_delay)mComponents[3];
    }
    public void SetReason_for_delay(Reason_for_delay reason_for_delay)
    {
        mComponents[3] = reason_for_delay;
        SetComponentPresent(3);
    }
    public boolean hasReason_for_delay()
                { return componentIsPresent(3); }
    public void deleteReason_for_delay()
                { SetComponentAbsent(3); }

    public static class Reason_for_delay extends Enumerated {

        /**
        The default constructor.
        */
        public Reason_for_delay() {super(cFirstNumber);}
        protected Reason_for_delay(long value) { super(value);}

        protected ASN1World getASN1World()
                { return wineco.Wineco.cASN1World; }

        // Named list definitions.
        public static final Reason_for_delay computer_failure =
                        new Reason_for_delay(0);
        public static final Reason_for_delay network_failure =
                        new Reason_for_delay(1);
        public static final Reason_for_delay other =
                        new Reason_for_delay(2);
        private final static Reason_for_delay cNamedNumbers[] =
                {computer_failure, network_failure, other};
        protected final static long cFirstNumber = 0;
        protected final static boolean cLinearNumbers = false;
        protected Enumerated[] getNamedNumbers() { return cNamedNumbers;}
        protected boolean hasLinearNumbers() { return cLinearNumbers;}
        protected long getFirstNumber() { return cFirstNumber;}
    } // End class definition for Reason_for_delay

    // Methods for field "additional_information"
    public Additional_information getAdditional_information()
    {
        return (Additional_information)mComponents[4];
    }
    public void SetAdditional_information
        (Additional_information additional_information)
    {
        mComponents[4] = additional_information;
        SetComponentPresent(4);
    }
    public boolean hasAdditional_information()
                { return componentIsPresent(4); }
    public void deleteAdditional_information()
                { SetComponentAbsent(4); }

    public static class Additional_information extends SequenceOf {

        /**
        The default constructor.
        */
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        public Additional_information() {}

        protected ASN1World getASN1World()
                { return wineco.Wineco.cASN1World; }

        /**
        Construct from a IAAPI Value Reference.
        */
        public Additional_information(ASN1World world, int index)
                {ASN1Module.getValueReference(world, this, index); }

        /**
        Add an Element to the SEQUENCE OF/SET OF.
        */
        public synchronized void add(PrintableString element)
        {
            super.addElement(element);
        }
        /**
        Set an Element in the SEQUENCE OF/SET OF.
        */
        public synchronized void set
                (PrintableString element, int atIndex)
        {
            super.SetElement(element, atIndex);
        }
        /**
        Get an Element from the SEQUENCE OF/SET OF.
        */
        public synchronized PrintableString get(int atIndex)
        {
            return (PrintableString) super.getElement(atIndex);
        }
        /**
        Insert an Element into the SEQUENCE OF/SET OF.
        */
        public synchronized void insert
                (PrintableString element, int atIndex)
        {
            super.insertElement(element, atIndex);
        }
        /**
        Remove an Element from the SEQUENCE OF/SET OF.
        */
        public synchronized void remove(PrintableString element)
        {
            super.removeElement(element);
        }
        /**
        Create an instance of  SEQUENCE OF/SET OF.
        */
        public AbstractData createInstance()
        {
            return ((AbstractData) new PrintableString());
        }
    } // End class definition for Additional_information

    // Methods for field "sales_data"
    public Sales_data getSales_data()
    {
        return (Sales_data)mComponents[5];
    }
    public void SetSales_data(Sales_data sales_data)
    {



380                                                                                                                           © OSS,31 May 1999

        mComponents[5] = sales_data;
    }

    public static class Sales_data extends SetOf {

        /**
        The default constructor.
        */
        public Sales_data() {}

        protected ASN1World getASN1World()
                { return wineco.Wineco.cASN1World; }

        /**
        Construct from a IAAPI Value Reference.
        */
        public Sales_data(ASN1World world, int index)
                { ASN1Module.getValueReference(world, this, index); }

        /**
        Add an Element to the SEQUENCE OF/SET OF.
        */
        public synchronized void add(Report_item element)
        {
            super.addElement(element);
        }
        /**
        Set an Element in the SEQUENCE OF/SET OF.
        */
        public synchronized void set(Report_item element, int atIndex)
        {
            super.SetElement(element, atIndex);
        }
        /**
        Get an Element from the SEQUENCE OF/SET OF.
        */
        public synchronized Report_item get(int atIndex)
        {
            return (Report_item) super.getElement(atIndex);
        }
        /**
        Insert an Element into the SEQUENCE OF/SET OF.
        */
        public synchronized void insert
                (Report_item element, int atIndex)
        {
            super.insertElement(element, atIndex);
        }
        /**
        Remove an Element from the SEQUENCE OF/SET OF.
        */
        public synchronized void remove(Report_item element)
        {
            super.removeElement(element);
        }
        /**
        Create an instance of  SEQUENCE OF/SET OF.
        */
        public AbstractData createInstance()
        {
            return ((AbstractData) new Report_item());
        }
    } // End class definition for Sales_data
} // End class definition for Return_of_sales
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public class Report_item extends Sequence {

    /**
    The default constructor.
    */
    public Report_item() {}

    protected ASN1World getASN1World()
          { return wineco.Wineco.cASN1World; }

    /**
    Construct from an IAAPI Value Reference.
    */
    public Report_item(ASN1World world, int index)
          { ASN1Module.getValueReference(world, this, index); }

    /**
    Construct with components.
    */
    public Report_item(
        ObjectIdentifier item,
        ObjectDescriptor item_description,
        OctetString bar_code_data,
        boolean ran_out_of_stock,
        double min_stock_level,
        double max_stock_level,
        double average_stock_level)
    {
        SetItem(item);
        SetItem_description(item_description);
        SetBar_code_data(bar_code_data);
        SetRan_out_of_stock(ran_out_of_stock);
        SetMin_stock_level(min_stock_level);
        SetMax_stock_level(max_stock_level);
        SetAverage_stock_level(average_stock_level);
    }

    /**
    Construct with required components.
    */
    public Report_item(
        ObjectIdentifier item,
        OctetString bar_code_data,
        double min_stock_level,
        double max_stock_level,
        double average_stock_level)
    {
        SetItem(item);
        SetBar_code_data(bar_code_data);
        SetMin_stock_level(min_stock_level);
        SetMax_stock_level(max_stock_level);
        SetAverage_stock_level(average_stock_level);
    }

    protected void initComponents()
    {
        mComponents[0] = new ObjectIdentifier();
        mComponents[1] = new ObjectDescriptor();
        mComponents[2] = new OctetString();
        mComponents[3] = new BOOLEAN();
        mComponents[4] = new Real();
        mComponents[5] = new Real();
        mComponents[6] = new Real();
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    }

    // Instance initializer
    {
        mComponents = new AbstractData[7];
        mPresentBits = new java.util.BitSet(mComponents.length);
        mComponents[3] = new BOOLEAN();
        mComponents[4] = new Real();
        mComponents[5] = new Real();
        mComponents[6] = new Real();
    }

    // Methods for field "item"
    public ObjectIdentifier getItem()
    {
        return (ObjectIdentifier)mComponents[0];
    }
    public void SetItem(ObjectIdentifier item)
    {
        mComponents[0] = item;
    }

    // Methods for field "item_description"
    public ObjectDescriptor getItem_description()
    {
        return (ObjectDescriptor)mComponents[1];
    }
    public void SetItem_description(ObjectDescriptor item_description)
    {
        mComponents[1] = item_description;
        SetComponentPresent(1);
    }
    public boolean hasItem_description()
                        { return componentIsPresent(1); }
    public void deleteItem_description()
                        { SetComponentAbsent(1); }

    // Methods for field "bar_code_data"
    public OctetString getBar_code_data()
    {
        return (OctetString)mComponents[2];
    }
    public void SetBar_code_data(OctetString bar_code_data)
    {
        mComponents[2] = bar_code_data;
    }

    // Methods for field "ran_out_of_stock"
    public boolean getRan_out_of_stock()
    {
        return ((BOOLEAN) mComponents[3]).booleanValue();
    }
    public void SetRan_out_of_stock(boolean ran_out_of_stock)
    {
        ((BOOLEAN) mComponents[3]).SetValue(ran_out_of_stock);
        SetComponentPresent(3);
    }
    public void SetRan_out_of_stockToDefault()
                        {SetComponentAbsent(3); }
    public boolean hasDefaultRan_out_of_stock()
                        { return componentIsPresent(3); }
    public boolean hasRan_out_of_stock()
                        { return componentIsPresent(3); }
    public void deleteRan_out_of_stock()
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                        { SetComponentAbsent(3); }

    // Methods for field "min_stock_level"
    public double getMin_stock_level()
    {
        return ((Real) mComponents[4]).doubleValue();
    }
    public void SetMin_stock_level(double min_stock_level)
    {
        ((Real) mComponents[4]).SetValue(min_stock_level);
    }

    // Methods for field "max_stock_level"
    public double getMax_stock_level()
    {
        return ((Real) mComponents[5]).doubleValue();
    }
    public void SetMax_stock_level(double max_stock_level)
    {
        ((Real) mComponents[5]).SetValue(max_stock_level);
    }

    // Methods for field "average_stock_level"
    public double getAverage_stock_level()
    {
        return ((Real) mComponents[6]).doubleValue();
    }
    public void SetAverage_stock_level(double average_stock_level)
    {
        ((Real) mComponents[6]).SetValue(average_stock_level);
    }
} // End class definition for Report_item
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5  ASN.1 resources via the Web

This appendix provides a single link to an OSS Nokalva site that contains both links to other Web
resources and extensions of  this book.  In particular,  it contains:

• References to other publications (both Web-based and hard-copy) that are relevant to
readers of this book.

• A glossary of terms relevant to ASN.1,  including all the acronyms used in this book.
(Most of the acronyms used here are also included in the index,  which will provide
you with a quick look-up and perhaps a little more information.)

• Details of,  and/or links to other web-based ASN.1 resources such as mailing lists,
Olivier Dubuisson's site with his book, the Unicode site, my own site with my book
"Understanding OSI", the International Register site, ITU-T and ETSI sites, a site
giving the allocations for some parts of the Object Identifier tree,  etc etc.

• More details of  specifications that are defined using ASN.1,  with links to electronic
versions of those specifications where these are known to be publicly available.

• Errata sheets for this book as and when they are produced.

• An electronic copy of this book.

The URL for the OSS Nokalva site is:

http://www.nokalva.com

Please come and visit!

And just in case things might move – URLs have a habit of changing – a cross-link is also
provided at:

http://www.larmouth.demon.co.uk/books
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