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CHAPTER 1
Description of RSAES-OAEP
1.1 Introduction

RSAES-OAEP is a public-key encryption scheme combining the RSA algorithm [39] with the
Optimal Asymmetric Encryption Padding (OAEP) method. The inventors of RSA are Ronald L.
Rivest, Adi Shamir, and Leonard Adleman, while the inventors of OAEP are Mihir Bellare and
Phillip Rogaway [4], with enhancements by Don B. Johnson and Stephen M. Matyas [27].

The RSA algorithm is discussed in Section 1.2, while the EME-OAEP encoding method is given in
Section 1.3. The RSAES-OAEP encryption scheme is defined in Section 1.4. Note that the greater
part of Sections 1.2-1.4 is taken from PKCS #1 v2.0 [37].

1.1.1 Notation

The following notation will be used.

An octet is the eight-bit representation of an integer with the leftmost bit being the most significant
bit; this integer is the value of the octet.

An octet string is an ordered sequence of octets, where the first octet is the leftmost.

GCD(a,b) greatest common divisor of the two nonnegative integers a and b

LCM(a,b) least common multiple of the two nonnegative integers a and b

bxc the real number x rounded down to the closest integer

dxe the real number x rounded up to the closest integer

X‖Y concatenation of octet strings X and Y

X ⊕ Y bitwise exclusive-or of octet strings X and Y
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1.1.2 Data conversion primitives

Throughout this document, messages are octet strings, while the RSA primitives act on integers.
For this reason, we must specify how to convert an octet string into a nonnegative integer and vice
versa. This is done via two primitives I2OSP and OS2IP. I2OSP (Integer-to-Octet-String primitive)
produces an octet string of a desired length from an integer; the string may be viewed as the base-256
representation of the integer. OS2IP (Octet-String-to-Integer primitive) is the inverse of I2OSP.

1.1.2.1 I2OSP

I2OSP(x, l)

Input: x nonnegative integer to be converted

l intended length of the resulting octet string

Output: X corresponding octet string of length l

Errors: ‘‘integer too large’’

1. If x ≥ 256l, output ‘‘integer too large’’ and stop.

2. Write the integer x in its unique l-digit representation base 256:

x = xl−1256l−1 + xl−2256l−2 + . . . + x1256 + x0,

where 0 ≤ x < 256 (one or more leading digits will be zero if x < 256l−1).

3. Let the octet Xi have the integer value xl−1 for 1 ≤ i ≤ l. Output the octet string
X = X1X2 . . . Xl.

1.1.2.2 OS2IP

OS2IP(X)

Input: X octet string to be converted

Output: x corresponding nonnegative integer

1. Let X1X2 . . . Xn be the octets of X from first to last, and let Xi have the integer value xl−i for
1 ≤ i ≤ l.

2. Let x = xl−1256l−1 + xl−2256l−2 + . . . + x1256 + x0.

3. Output x.



- 5

1.2 The RSA algorithm

The RSA algorithm was invented by Ronald L. Rivest, Adi Shamir, and Leonard Adleman in 1977.
The security of the algorithm is based on the hardness of factoring a large composite number and
computing eth roots modulo a composite number for a specified odd integer e.

An RSA public key consists of a pair (n, e) of integers, where n is the modulus and e is the public
exponent. The modulus n is a large composite number (a bit length of at least 1024 is the current
recommended size), while the public exponent e is normally a small prime such as 3, 17, or 65537.
In this specification, the modulus is the product of two distinct primes. For a discussion of the case
of three or more prime factors (so-called ‘‘multi-prime’’ RSA), see Appendix A at the end of this
document.

An RSA private key may have one of two different representations. Both representations contain
information about an integer d satisfying

(xe)d ≡ x (mod n)

for all integers x. This means that the private key can be used to solve the equation

xe ≡ c (mod n)

in x, i.e., compute the eth root of c modulo n.

The RSA encryption primitive RSAEP takes as input the public key (n, e) and a positive integer
m < n (a message representative) and returns the integer c = me mod n. The RSA decryption primitive
RSADP takes as input the private key and an integer c < n (a ciphertext representative) to return the
integer m = cd mod n, where d is an integer with the above specified properties.

The public key is defined in Section 1.2.1, while the private key is defined in Section 1.2.2. The RSA
primitives are described in detail in Subsections 1.2.3 and 1.2.4; they coincide with the corresponding
primitives in PKCS #1 v2.0 [37], IEEE Std 1363-2000 [25], and the draft ANSI X9.44 [1]. For a
suggested key generation algorithm, see Section 1.5. For the mathematical background of the RSA
algorithm, see Appendix B.

1.2.1 RSA public key

For the purposes of this document, an RSA public key consists of two components:

n the modulus, a nonnegative integer

e the public exponent, a nonnegative integer

In a valid RSA public key, the modulus n is a product of two distinct odd primes p and q, and the
public exponent e is an integer between 3 and n− 1 satisfying GCD(e, p− 1) = GCD(e, q − 1) = 1.

1.2.2 RSA private key

For the purposes of this document, an RSA private key may have either of two representations.
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1. The first representation consists of the pair (n, d), where the components have the following
meanings:

n the modulus, a nonnegative integer

d the private exponent, a nonnegative integer

In a valid RSA private key with this representation, the modulus n is the same as in the corresponding
public key and is the product of two odd primes p and q, and the private exponent d is a positive
integer less than n satisfying

e · d ≡ 1 (mod LCM(p− 1, q − 1)),

where e is the corresponding public exponent.

2. The second representation consists of a quintuple (p, q, dP, dQ,qInv), where the components have
the following meanings:

p the first factor, a nonnegative integer

q the second factor, a nonnegative integer

dP the first factor’s exponent, a nonnegative integer

dQ the second factor’s exponent, a nonnegative integer

qInv the CRT coefficient (see Remark 2 below), a nonnegative integer

In a valid RSA private key with this representation, the two factors p and q are the prime factors of
the modulus n, the exponents dP and dQ are positive integers less than p and q respectively satisfying

e · dP ≡ 1 (mod p− 1);

e · dQ ≡ 1 (mod q − 1),

and the CRT coefficient qInv is a positive integer less than p satisfying

q · qInv ≡ 1 (mod p).

Remarks.

1. The parameters in either of the representations can be efficiently computed via the Extended
Euclidean Algorithm (see IEEE Std 1363-2000 [25], A.2.2).

2. The second representation is based on the Chinese Remainder Theorem (CRT); the benefit
of applying CRT to RSA operations was observed by Quisquater and Couvreur [38]. See
Appendices I and II for more information on CRT.
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3. In IEEE Std 1363-2000, a third representation of the private key is defined. This representation
consists of a triplet (p, q, d), where p and q are the prime factors of n and d is the private
exponent. This representation is closely related to the second representation above in that the
parameters dP, dQ, dInv are easily derived from (p, q, d).

1.2.3 RSAEP

RSAEP((n, e),m)

Input: (n, e) RSA public key

m message representative, an integer between 0 and n− 1

Output: c ciphertext representative, an integer between 0 and n− 1

Errors: ‘‘message representative out of range’’

Assumption: public key (n, e) is valid

1. If the message representativem is not between 0 and n− 1, output ‘‘message representative out
of range’’ and stop.

2. Let c = me mod n.

3. Output c.

1.2.4 RSADP

RSADP(K, c)

Input: K RSA private key, whereK has one of the following forms:

1. a pair (n, d)

2. a quintuple (p, q, dP, dQ, qInv)

c ciphertext representative, an integer between 0 and n− 1

Output: m message representative, an integer between 0 and n− 1

Errors: ‘‘ciphertext representative out of range’’

Assumption: private keyK is valid

1. If the ciphertext representative c is not between 0 and n− 1, output ‘‘ciphertext representative
out of range’’ and stop.
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2. If the first form (n, d) of K is used:

2.1 Let m = cd mod n.

Else, if the second form (p, q, dP, dQ,qInv) of K is used:

2.2 Let m1 = cdP mod p.

2.3 Let m2 = cdQ mod q.

2.4 Let h = (m1 −m2) · qInv mod p.

2.5 Let m = m2 + q · h.

3. Output m.



- 9

1.3 The EME-OAEP encoding method

An encoding method for encryption consists of an encoding operation and a decoding operation. In
this document, the encoding method is EME-OAEP, which was invented by Mihir Bellare and
Phillip Rogaway in 1994, with enhancements given by Don B. Johnson and Stephen M. Matyas
in 1996. The encoding operation EME-OAEP-Encode (Section 1.3.1) maps a message M to an
encoded message EM of a specified length using some ‘‘encoding parameters’’ (an octet string P ),
a hash function, and a mask generation function. The decoding operation EME-OAEP-Decode

(Section 1.3.2) maps an encoded message EM back to a message; the encoding and decoding
operations are inverses.

Assuming that the mask generation function in EME-OAEP has appropriate properties, and the
key size is sufficiently large, RSAES-OAEP is semantically secure against adaptive chosen ciphertext
attacks; see Section 2.2 of this document for more information.

The EME-OAEP encoding operation introduces some randomness (20 octets in the case of SHA-1),
so that different applications of the encoding operation to the same message will produce different
encoded messages. Furthermore, a deterministic padding operation including the hash of the
encoding parameters is applied to the message to be encoded. In this manner, the encoded message
will have some structure that can be verified by the decoding operation. For example, the decoding
operation is able to extract the hash of the encoding parameters from the encoded message.

The EME-OAEP encoding operation is described in Section 1.3.1, while the decoding operation is
treated in Section 1.3.2. EME-OAEP is defined as in PKCS #1 v2.0 [37] and coincides with EME1 in
IEEE Std 1363-2000 [25] and EME-OAEP in the draft ANSI X9.44 [1], except that EME1 outputs
an integer of a desired bit length rather than an octet string.

EME-OAEP is parameterized by the choice of hash function Hash and mask generation function
MGF. In this document, MGF is based on Hash as defined in Section 1.3.3; this definition coincides
with that of PKCS #1 v2.0, IEEE Std 1363-2000 and the draft ANSI X9.44. In PKCS #1 v2.0 and
the draft ANSI X9.44, the recommended hash function is SHA-1 [18], while IEEE Std 1363-2000
recommends SHA-1 and RIPEMD-160 [17]. Future revisions of PKCS #1 may suggest other hash
functions and define new mask generation functions.

1.3.1 OAEP encoding operation

EME-OAEP-Encode(M,P, emLen)

Options: Hash hash function (hLen denotes the length in octets of the hash function output)

MGF mask generation function

Input: M message to be encoded, an octet string of length at most emLen − 1 − 2hLen
(mLen denotes the length in octets of the message)

P encoding parameters, an octet string
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emLen intended length in octets of the encoded message, at least 2hLen+ 1

Output: EM encoded message, an octet string of length emLen

Errors: ‘‘message too long’’; ‘‘parameter string too long’’

1. If the length of P is greater than the input limitation for the hash function (261 − 1 octets for
SHA-1) then output ‘‘parameter string too long’’ and stop.

2. If mLen > emLen− 2hLen− 1, output ‘‘message too long’’ and stop.

3. Generate an octet string PS consisting of emLen− mLen− 2hLen− 1 zero octets. The length of
PS may be 0.

4. Let pHash = Hash(P ), an octet string of length hLen.

5. Concatenate pHash, PS, the message M , and other padding to form a data block DB as
DB = pHash‖PS‖01‖M .

6. Generate a random octet string seed of length hLen.

7. Let dbMask = MGF (seed , emLen− hLen).

8. Let maskedDB = DB ⊕ dbMask.

9. Let seedMask = MGF (maskedDB, hLen).

10. Let maskedSeed = seed ⊕ seedMask.

11. Let EM = maskedSeed‖maskedDB.

12. Output EM .

Remark. The EME-OAEP encoding operation is illustrated in Figure C.1 at the end of this
document.

1.3.2 OAEP decoding operation

EME-OAEP-Decode(EM, P )

Options: Hash hash function (hLen denotes the length in octets of the hash function output)

MGF mask generation function

Input: EM encoded message, an octet string of length at least 2hLen+1 (emLen denotes the
length in octets of EM )



- 11

P encoding parameters, an octet string

Output: m recovered message, an octet string of length at most emLen− 1− 2hLen

Errors: ‘‘decoding error’’

1. If the length of P is greater than the input limitation for the hash function (261 − 1 octets for
SHA-1) then output ‘‘decoding error’’ and stop.

2. If emLen < 2hLen+ 1, output ‘‘decoding error’’ and stop.

3. Let maskedSeed be the first hLen octets of EM and let maskedDB be the remaining emLen−hLen
octets.

4. Let seedMask = MGF (maskedDB, hLen).

5. Let seed = maskedSeed ⊕ seedMask.

6. Let dbMask = MGF (seed , emLen− hLen).

7. Let DB = maskedDB⊕ dbMask.

8. Let pHash = Hash(P ), an octet string of length hLen.

9. Separate DB into an octet string pHash’ consisting of the first hLen octets of DB, a (possibly
empty) octet string PS consisting of consecutive zero octets following pHash’, and a message
M as

DB = pHash’‖PS‖01‖M.

If there is no 01 octet to separate PS fromM , output ‘‘decoding error’’ and stop.

10. If pHash’ does not equal pHash, output ‘‘decoding error’’ and stop.

11. OutputM .

Remark. The EME-OAEP decoding operation is illustrated in Figure C.2 at the end of this
document.

1.3.3 Mask generation function

A mask generation function takes an octet string of variable length and a desired output length as
input, and outputs an octet string of the desired length. There may be restrictions on the length
of the input and output octet strings, but such bounds are generally very large. Mask generation
functions are deterministic; the octet string output is completely determined by the input octet string.
The output of a mask generation function should be pseudorandom, that is, it should be infeasible
to predict, given one part of the output but not the input, another part of the output. The provable
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security of RSAES-OAEP relies on the random nature of the output of the mask generation function,
which in turn relies on the random nature of the underlying hash function.

MGF(Z, l)

Options: Hash hash function (hLen denotes the length in octets of the hash function output)

Input: Z seed from which mask is generated, an octet string

l intended length in octets of the mask, at most 232hLen

Output: mask mask, an octet string of length l

Errors: ‘‘mask too long’’

Steps:

1. If l > 232hLen, output ‘‘mask too long’’ and stop.

2. Let T be the empty octet string.

3. For i = 0 to dl/hLene − 1, do

3.1 Convert i to an octet string C of length 4 with the primitive I2OSP:

C = I2OSP(i, 4).

3.2 Concatenate the hash of the seed Z and C to the octet string T :

T = T‖Hash(Z‖C)

4. Output the leading l octets of T as the octet string mask.
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1.4 The RSAES-OAEP encryption scheme

1.4.1 Encryption operation

RSAES-OAEP-Encrypt((n, e),M, P )

Input: (n, e) recipient’s RSA public key

M message to be encrypted, an octet string of length at most k− 2− 2hLen, where
k is the length in octets of the modulus n and hLen is the length in octets of the
hash function output for EME-OAEP.

P encoding parameters, an octet string that may be empty

Output: C ciphertext, an octet string of length k

Errors: ‘‘message too long’’

Assumption: public key (n, e) is valid

1. Apply the EME-OAEP encoding operation (see Section 1.3.1) to the message M and the
encoding parameters P to produce an encoded message EM of length k − 1 octets:

EM = EME-OAEP-Encode(M,P, k − 1).

If the encoding operation outputs ‘‘message too long,’’ then output ‘‘message too long’’ and
stop.

2. Convert the encoded message EM to an integer message representative m (see Section 1.1.2.2):

m = OS2IP(EM).

3. Apply the RSAEP encryption primitive (Section 1.2.3) to the public key (n, e) and the message
representative m to produce an integer ciphertext representative c:

c = RSAEP((n, e),m).

4. Convert the ciphertext representative c to a ciphertext C of length k octets (see Section 1.1.2.1):

C = I2OSP(c, k).

5. Output the ciphertext C.

1.4.2 Decryption operation

RSAES-OAEP-Decrypt(K, C, P )

Input: K recipient’s RSA private key
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C ciphertext to be decrypted, an octet string of length k, where k is the length in
octets of the modulus n

P encoding parameters, an octet string that may be empty

Output: M message, an octet string of length at most k − 2 − 2hLen, where hLen is the
length in octets of the hash function output for EME-OAEP

Errors: ‘‘decryption error’’

Assumption: private keyK is valid

1. If the length of the ciphertext C is not k octets, output ‘‘decryption error’’ and stop.

2. Convert the ciphertext C to an integer ciphertext representative c (see Section 1.1.2.2):

c = OS2IP(C).

3. Apply the RSADP decryption primitive (Section 1.2.4) to the private key K and the ciphertext
representative c to produce an integer message representative m:

m = RSADP(K, c).

If RSADP outputs ‘‘ciphertext representative out of range,’’ then output ‘‘decryption error’’ and
stop.

4. Convert the message representative m to an encoded message EM of length k − 1 octets (see
Section 1.1.2.1):

EM = I2OSP(m, k − 1).

If I2OSP outputs ‘‘integer too large,’’ then output ‘‘decryption error’’ and stop.

5. Apply the EME-OAEP decoding operation (see Section 1.3.2) to the encoded message EM and
the encoding parameters P to recover a messageM :

M = EME-OAEP-Decode(EM, P ).

If the decoding operation outputs ‘‘decoding error,’’ then output ‘‘decryption error’’ and stop.

6. Output the messageM .

Remark. It is important that the errors in steps 4 and 5 are indistinguishable, otherwise an
adversary may be able to extract useful information from the type of error occurred. In particular,
the error messages in steps 4 and 5 must be identical. Moreover, the execution time of the decryption
operation must not reveal whether an error has occurred. One way of achieving this is as follows:
In case of error in step 4, proceed to step 5 with EM set to a string of zero octets. Error message
information is used to mount a chosen ciphertext attack on PKCS #1 v1.5 encrypted messages in [5].
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1.5 An algorithm for generating an RSA key pair

In this section, we give an algorithm for generating an RSA key pair. In Section 1.5.1, we describe
the key generation algorithm RSAKG, which produces a key pair with a modulus of a desired bit
length and a predetermined public exponent. The algorithm RSAKG will need two primes. Each of
these primes is produced from a subroutine PG, which takes an interval and the public exponent as
input and returns a random prime p belonging to the interval, such that p − 1 is relatively prime to
the public exponent. The prime generation algorithm PG is given in Section 1.5.2.

1.5.1 Key generation

RSAKG(L, e)

Input: L the desired bit length for the modulus

e the public exponent, an odd integer greater than 1

Output: K a valid private key in either of the two representations described in Section 1.2.2
with a modulus of bit length L

(n, e) a valid public key

1. Generate a prime p such that b2(L−1)/2c + 1 ≤ p ≤ d2L/2e − 1 and such that GCD(p, e) = 1
using PG with input (b2(L−1)/2c+ 1, d2L/2e − 1, e).

2. Generate a prime q such that b2(L−1)/2c + 1 ≤ q ≤ d2L/2e − 1 and such that GCD(q, e) = 1
using PG with input (b2(L−1)/2c+ 1, d2L/2e − 1, e).

3. Put n = pq. The public key is (n, e).

4. Compute the parameters necessary for the private key K (see Section 1.2.2).

5. Output the public key and the private key.

Remark. There are other possibilities for the choice of intervals. For example, in Annex A to
IEEE Std 1363-2000 [25], the interval for p is [2M−1, 2M − 1], where M = dL/2e, and the interval
for q is chosen in a way that makes the product of p and q an L-bit number. Contrary to the choice
of intervals in the algorithm RSAKG above, this approach may give primes p and q with different bit
lengths.

1.5.2 Generating a random prime within a given interval

The prime generation algorithm suggested in this section uses the probabilistic Miller-Rabin primality
test and does not check whether the primes are ‘‘strong’’ or not -- with an overwhelming probability,
the generated numbers will indeed be strong primes. See Annex A in IEEE Std 1363-2000 [25] for
an algorithm giving a proof that a number is a prime and for an algorithm generating primes that are
provably strong.
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PG(r, s, e)

Input: r the lower bound for the prime to be generated

s the upper bound for the prime to be generated

e an odd positive integer

Output: p an odd random prime uniformly chosen from the interval [r, s] such that
GCD(p− 1, e) = 1

1 Generate a random odd integer p uniformly from the interval [r − 2, s− 2].

2 Set p← p + 2.

3 If p is divisible by any of the, say, 2000 smallest primes, return to step 2.

4 If GCD(p− 1, e) 6= 1, then return to step 2.

5 Let v, w be such that w is odd and p− 1 = w2v .

6 Choose a positive integer t such that the primality test in step 8 is successful with a sufficiently
large probability (see Remark 1 below).

7 Set i← 1.

8 While i ≤ t do

8.1 Generate a random integer a uniformly from the interval [1, p− 1].

8.2 Set b← aw mod p.

8.3 If b = 1 or b = p− 1, then go to step 8.6.

8.4 Set j ← 0.

8.5 While b 6= p− 1 do

8.5.1 Set j ← j + 1.

8.5.2 If j = v, then return to step 2 (p is composite).

8.5.3 Set b← b2 mod p (= aw2j

mod p).

8.5.4 If b = 1, then return to step 2 (p is composite).



- 17

8.6 Set i← i + 1.

9 If p is greater than s, return to step 1.

10 Output p.

Remarks.

1. The Miller-Rabin primality test in step 8 is a probabilistic test, which means that there is a small
chance that an error occurs, i.e., a random composite number passes the test. For a randomly
chosen candidate this error has been estimated in [16]; to achieve an error probability less than
2−100 for a random k-bit integer, it suffices to choose the parameter t in accordance with the
following table.

k 256 342 384 410 512 683 768 1024
t 17 12 11 10 8 6 5 4

342 = d1024/3e, 410 = d2048/5e and 683 = d2048/3e are included for completeness, being
typical values in the multi-prime setting (see Appendix A).

2. Step 8.5 in the Miller-Rabin primality test is based on the following facts: If p is a prime,
then ap−1 ≡ 1 (mod p). If, in addition, t is even and satisfies at ≡ 1 (mod p), then
at/2 ≡ ±1 (mod p).

3. To check whether p is divisible by any of the smallest primes p1, p2, . . . , p2000, we have to
compute the remainder ri when p is divided by pi; if ri = 0 for some i, then p is not a prime.
Yet, we need to perform this trial division only once for each prime pi; when p is replaced with
p + 2, just replace ri with (ri + 2) mod pi.

4. Instead of increasing the value of p in steps of 2 until a prime is found, one may generate a
brand new random integer each time a number p proves to be composite. In this manner,
the prime eventually found will be chosen uniformly at random; an ostensible drawback with
incremental search is that the prime eventually found will no longer be uniformly chosen
(primes preceded by a big ‘‘gap’’ containing no primes will be chosen with a larger probability
than other primes). Yet, Brandt and Damgard [2] have shown that this bias does not affect
security. Moreover, with the alternative approach, we cannot simplify our computations in the
way described in Remark 3.

5. A practical method for generating a number p nearly uniformly from an interval [r, s] is as
follows. Let M be the bitlength of s and let m be a suitably chosen number, for example,
m = 32. Generate an (M + m)-bit random integer x uniformly from the interval [0, 2M+m− 1]
and put

p = (x mod (s− r + 1)) + r.

The extram bits of x are included to make pmore uniformly distributed over the interval [r, s];
any of the most probable integers (which are at the beginning of the interval) will be chosen
with probability at most 1 + 2−m times the probability for any of the least probable integers
(which are at the end of the interval).
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CHAPTER 2
Security properties
The security of RSAES-OAEP depends on the security of the underlying RSA encryption and
decryption primitives, RSAEP and RSADP (described in Subsections 1.2.3 and 1.2.4), and the
security of the OAEP encoding method (described in Section 1.3).

The security of the encryption and decryption primitives will be described in Section 2.1. The
advantage of the technique that is generically known as OAEP (Optimal Asymmetric Encryption
Padding [4]) is that under one model of analysis -- the so-called random oracle model -- the security of
RSAES-OAEP can be tightly related to the security of RSAEP/RSADP. This allows us to consider
the security of RSAES-OAEP in Section 2.2.

2.1 RSA encryption and decryption primitive

Over the years many different researchers have considered the security of RSAEP/RSADP. Boneh [6]
gives an excellent survey of the main attacks which we summarize here. In some cases, the discussion
of the private exponent d refers to the inverse of e mod (p− 1)(q − 1) as opposed to the alternative
definition given in this document; knowledge of either is of course sufficient to compromise security.

1. Taking eth roots of c modulo n when the factorization of n is unknown.

This is an open problem [10] and there are currently no practical techniques for achieving
this when typical parameter choices are made. Although the RSA problem of taking eth roots
modulo n is not known to be equivalent to factoring the modulus, factorization is the only
method known for solving the problem in the general case. Boneh and Venkatesan [10] have
shown that if there is an algebraic reduction from factoring to eth roots in time T , then it is
possible to factor in (roughly) time 2eT . This means that, for very small e (say, less than 64), if
factoring is hard, then the problems are not equivalent (at least via algebraic reductions). For
larger e (for instance, e = 216 + 1), there still might be an efficient reduction. However, see
further notes below for possible methods of determining the private key d, and hence solving
the problem as well as factoring the modulus, when sufficient information about the private
key is leaked.

2. Factoring n and then taking eth roots of c modulo n.

Trends in the effectiveness of factoring integers are carefully collated and scrutinized by the
cryptographic community. Progress over past years has been gradual but steady. Under a
variety of models it is possible to provide a range of predictions for the continued resistance
of an RSA modulus n to a factoring attack [33, 43].

Themost recent factorization of anRSAmodulus was RSA-512, a 512-bit RSAmodulus [40, 45].
It is possible to use this emperical evidence as a base point from which to make estimates for
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the likely security of RSA moduli of different sizes. While there are a variety of comparisons
available [33, 43] which sometimes offer divergent views, there seems to be a general consensus
that the security offered by 1024-bit RSAEP/RSADP is roughly equivalent to that offered
by 80-bit symmetric key cryptography in terms of computational effort1. Note that the user
can freely choose appropriate parameter choices to give a level of protection appropriate to
the user’s own risk assessment and key lengths of 2048-bit and higher offer an increasingly
significant margin for security. Recent proposals to use an opto-electronic device TWINKLE
to speed up part of the factoring process [32] are unlikely to have any significant impact at the
recommended parameter choices today [42].

3. Two users sharing a common modulus.

Two users should never share the same modulus n, even if they use different encryp-
tion/decryption exponent pairs. Systems that allow users to share moduli are using
RSAEP/RSADP inappropriately.

4. Using a small private exponent d.

It may be tempting to use a small private exponent d for reasons of efficiency. It has been
shown [8, 47] that a basic implementation of RSAEP/RSADP can be susceptible to attack if
d < n0.292. It is conjectured that this might continue to be the case if d < n0.5. A small private
exponent d should not be used.

5. Using a low public exponent e.

Some progress has been made [13] on exploiting the use of a low public exponent. While there
is no particular attack within the context of RSAES-OAEP that compromises the security of
the public exponent e = 3, more conservative users may prefer to use other public exponents
such as e = 17 or e = 216 + 1 while still retaining a very competitive performance for
encryption. Also, as noted further in Annex D.4.3.4 of IEEE Std 1363-2000 [25], a larger
public exponent can provide an additional level of defense in the case that the underlying
random number generation fails in an implementation of the OAEP method, undermining the
security properties offered by that method.

6. Broadcasting the same message to multiple users.

It has been known for some time that it can be unsafe to broadcast the same message to
different users if no padding, or a very simple padding scheme is used [22]. Application of [13]
allows improvements to this original work [22] to be made. The application of EME-OAEP
as the padding scheme prior to encryption is sufficient to resist these attacks.

7. Sending related messages to the same user.

For small e it can be possible to recover simply-related messages that are encrypted under
the same public-key [14]. Extensions showed some practical applications of this work when
small amounts of random padding are used prior to encrypting with RSAEP. In [15] an attack
is described that applies to a case where the plaintext ends by sufficiently many zeroes, and
two or more ciphertexts corresponding to the same plaintext are available. The application of
EME-OAEP as the padding scheme prior to encryption is sufficient to resist these attacks.

1Under an equivalent-cost analysis 1024-bit RSAEP/RSADP is viewed as offering greater security than 80-bit
symmetric key cryptography [43].
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8. Using partial information about the private key d.

Given the dlog2 n/4e least significant bits of the private exponent d, it is possible to reconstruct
all of d if e <

√
n [9]. Furthermore, when a small exponent e is used, the most significant

half of the bits of d can be leaked [6]. Although determining the remaining bits is of course
still difficult, if the private exponent is protected by symmetric encryption, knowledge of the
most significant half of the bits of d may facilitate a known-plaintext attack on the symmetric
encryption method. Accordingly, it is essential that the remaining bits of the private key d

should be well protected.

9. Using partial information about the factors p, q.

Given the dlog2n/4e least significant bits of p (resp. q) or the dlog2n/4e most significant bits
of p (resp. q), one can efficiently factor n [13]. The entirety of the secret primes p and q should
be protected.

It is generally accepted that when RSAEP is used with appropriate parameter choices and coupled
with a secure padding scheme like OAEP, then the most effective attack is to factor the modulus n.
Under this assumption we can relate the security of RSAES-OAEP to the effort required to factor
the underlying modulus of different sizes.

A crude estimate for the increased computing resources required beyond that for factoring RSA-512
can be derived [43] for different sizes of RSA moduli. For 1024-bit RSA moduli, the factor increase
in computational power is estimated as 7 × 106 while for 2048-bit RSA the estimate is 9 × 1015.
Increases in computing power might be accounted for by some combination of the use of more
machines, increasingly powerful machines, or more calendar time. The calendar time required for the
factorization of RSA-512 was 3.7 months [40]. Other issues like the cost and availability of memory
may also figure in deriving predictions for the future security of RSAEP/RSADP [33, 43].

2.2 RSAES-OAEP

Over the years a variety of padding methods for both RSA encryption and signature primitives have
been proposed. OAEP has the benefit of coupling good security guarantees with good performance.
In particular OAEP combined with RSA offers security against what is termed adaptive chosen
ciphertext attacks; see the discussion in Section 2.2.1 below. We might contrast this with the original
simple padding schemes used in previous versions2 of PKCS #1 (v1.5 and earlier) which did not
offer security against such attacks.

The OAEP construction requires the use of a mask generation function. It is typical to practically
instantiate this function -- as we do here -- with a trusted hash function such as SHA-1.

2.2.1 The OAEP encoding method

Recently discovered shortcomings in the OAEP encoding method seemed to suggest that there are
reasons to call the security of RSAES-OAEP in question. Luckily, this is not the case; RSAES-OAEP

2For example, the encryption scheme defined in PKCS #1 v1.5 was found to be susceptible to an attack by
Bleichenbacher [5].
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is provably secure in the random oracle model. In this section we give a brief outline of the
background.

In 1994, Bellare and Rogaway[4] introduced a security concept that they denoted plaintext awareness
(PA94). They proved that if an encryption primitive (e.g., RSAEP) is hard to invert without the
private key, then the corresponding OAEP-based encryption scheme is plaintext-aware , meaning
roughly that an adversary cannot produce a valid ciphertext without actually ‘‘knowing’’ the underlying
plaintext. Plaintext awareness of an encryption scheme is closely related to the resistance of the
scheme against chosen ciphertext attacks. In such attacks, an adversary is given the opportunity to send
queries to an oracle simulating the decryption primitive. Using the results of these queries, the
adversary attempts to decrypt a challenge ciphertext.

However, there are two flavors of chosen ciphertext attacks, and PA94 implies security against only
one of them. The difference relies on what the adversary is allowed to do after she is given the
challenge ciphertext. The indifferent attack scenario (denoted CCA1) does not admit any queries to the
decryption oracle after the adversary is given the challenge ciphertext, whereas the adaptive scenario
(denoted CCA2) does (except that the decryption oracle refuses to decrypt the challenge ciphertext
once it is published). In 1998, Bellare and Rogaway, together with Desai and Pointcheval [3], came
up with a new, stronger notion of plaintext awareness (PA98) that does imply security against CCA2.

To summarize, there have been two potential sources for misconception: that PA94 and PA98 are
equivalent concepts; or that CCA1 and CCA2 are equivalent concepts. Either assumption leads to
the conclusion that the Bellare-Rogaway paper implies security of OAEP against CCA2 , which it
does not. OAEP has never been proven secure against CCA2; in fact, Victor Shoup [41] ingeniously
demonstrated recently that such a proof does not exist in the general case. Put briefly, Shoup showed
that an adversary in the CCA2 scenario who knows how to partially invert the encryption primitive
but does not know how to invert it completely may well be able to break the scheme. For example,
one may imagine an attacker who is able to break RSAES-OAEP if she is able to recover all but the
first 20 bytes of an integer encrypted with RSAEP. Such an attacker does not need to be able to fully
invert RSAEP, because she does not use the first 20 octets in her attack.

Still, RSAES-OAEP is secure against CCA2, which was demonstrated by Fujisaki, Okamoto,
Pointcheval, and Stern [19] shortly after the announcement of Shoup’s result. Using clever lattice
reduction techniques, they managed to show how to invert RSAEP completely given a sufficiently
large part of the pre-image. This observation, combined with a proof that OAEP is secure against
CCA2 if the underlying encryption primitive is hard to partially invert, fills the gap between what
Bellare and Rogaway proved about RSAES-OAEP and what some may have believed that they
proved. Somewhat paradoxically, we are hence saved by an ostensible weakness in RSAEP (i.e., the
whole inverse can be deduced from parts of it). As a consequence, it makes little sense replacing
OAEP with a ‘‘more secure’’ encoding method, because if a CCA2 adversary is able to break
RSAES-OAEP, then she will be able to break RSAEP equipped with any encoding method (if maybe
slightly less efficiently). For encryption primitives different from RSAEP, however, it might be
worthwhile considering a stronger encoding method such as OAEP+ suggested by Shoup [41].
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2.3 Basic techniques to avoid implementation weaknesses

The analytical security of RSAEP/RSADP along with RSAES-OAEP have been considered in
previous section. However we still need to implement RSAES-OAEP securely.

It is possible that weaknesses could be introduced when writing RSAES-OAEP as a component of
an application, or when running an application from which so-called side-channel information can
be deduced.

Within an engineering environment, implementation errors can be virtually eliminated by adopting
good product design and engineering practices. Adequate testing and product management
throughout the development cycle are essential. With regards to running an application using
RSAES-OAEP, protection of all private key information, secure memory management, and secure
error handling are all needed. Issues like the source of random numbers are, of course, fundamental
to the security of the implementation.

Over recent years there have been several proposals to break cryptosystems by utilizing so-called
side-channel information. Examples include timing attacks [30], power analysis [31], and fault
analysis [7].

Implementations of RSAES-OAEP can be made resistant to timing attacks and power analysis by
ensuring that all the steps in the computation of a private key operation take the same amount of time
or consume the same amount of power (though the environment of use will determine whether or
not such attacks and such precautions are viable). A more elegant approach to providing resistance
to timing attacks is to use blinding [28] as suggested by Ronald L. Rivest. Fault analysis is potentially
applicable to an implementation of RSAEP/RSADP which uses the chinese remainder theorem [38]
during decryption. However the use of OAEP padding means that this attack does not pose a threat
to RSAES-OAEP.

As with most cryptographic primitives, vulnerability against side-channel attacks can sometimes be
difficult to protect against at the algorithm level. Instead, it seems far more appropriate to provide
resistance to such system attacks at the level they are mounted -- at the system level.

No method is specified in this document for public-key validation, that is providing assurance to a
party (that is, the party generating the key pair, the party using the public key, or a neutral third party)
that a candidate public key conforms to the arithmetic definition of a public key. An invalid public
key might exist because of an inadvertent key generation calculation error or due to deliberate action
of an adversary. Use of an invalid public key should be assumed to void all security assurances,
including the inability of an adversary to decrypt a message or discover the associated private key.

As a general principle for any cryptosytem, the use of an improperly generated but otherwise valid
public key (for instance, one produced from an insufficiently random source), or an improperly
protected private key, may also void all security assurances. Implementation validation can mitigate
these risks as well as the possibility that invalid keys are used. However, it does not provide specific
assurance that a given public key is in fact valid.
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Methods for determining whether an RSA public key is valid are an area of active research; see
[11, 12, 21, 34, 35, 44] for some recent developments. By contrast, methods for validating public
keys in discrete logarithm and elliptic curve cryptosystems are straightforward: a public key can
be validated directly and without interaction with the private key holder. Annex A of IEEE Std
1363-2000 [25] gives examples of these methods.
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CHAPTER 3
Computational efficiency
Any single set of figures for the performance of RSAES-OAEP for a given platform can be
misleading. There is much variability in the performance of RSAES-OAEP depending on the
processor and clocking rate, the amount of space available, the type of arithmetic procedures used,
the use of dedicated hardware for some or part of the computation, and so forth.

Here we give a few key figures that give some illustration of the range of performances possible. The
overhead due to OAEP is insignificant compared to the computational requirements of the private
and public-key computations.

3.1 Dedicated coprocessors

source key-size encryption decryption
e = 3 with CRT

NetSwift-1000 [26] 1024 1 ms 5 ms
NetSwift-1000 [26] 2048 2 ms 25 ms

e = 17 with CRT
IBM 4758 (002/003) 1024 2 ms 6 ms
crypto co-processor [24]

3.2 Software

source key-size encryption decryption
e = 3 with CRT

C++ 1024 1 ms 27 ms
Celeron 450 MHz [46]
C++ 2048 2 ms 183 ms
Celeron 450 MHz [46]

3.3 Smart card coprocessors

source clock key-size encryption decryption
e = 216 + 1 with CRT

SGS-Thomson ST19KF16 [23] 10 MHz 1024 5 ms 110 ms
10 MHz 2048 100 ms 780 ms

Philips P83W8532 [23] 5 MHz 1024 25 ms 160 ms
5 MHz 2048 54 ms 1100 ms

Siemens SLE66CX160S [23] 5 MHz 1024 24 ms 230 ms
5 MHz 2048 268 ms 1475 ms

NEC µPD789828 [23] 40 MHz 1024 7 ms 100 ms
40 MHz 2048 45 ms 750 ms
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3.4 Key generation estimates

Each user of RSAES-OAEP must use a different RSA modulus. For this, two primes must be
generated. To estimate the performance of the key generation procedure, the following rule of thumb
may be used.

Prime generation of p and q as defined in RSAKG (see Section 1.5.1) involves an initial sieving phase
to remove obvious non-primes. Approximately 90-95 % of all integers are rejected in this phase (92
% on the average if the 170 smallest primes are used and 94 % if the 2000 smallest primes are used).
Unless the number of small primes is extremely large, the sieving phase is particularly efficient and
has little impact on the time for prime generation.

The Miller-Rabin primality test is applied a specified number t of times to each candidate prime that
passes the sieving stage. Each of these tests costs about the same as a full exponentiation modulo p.
The probability of finding anM -bit prime can be estimated by (M ln 2)−1, which means that finding
an M -bit prime (for a 2M -bit RSA modulus) might require that we test roughly M integers. With
an expected fraction of α of the integers eliminated in the sieving phase1, we may expect, on the
average, to find a prime after about (1− α)M ln 2 + (t− 1) Miller-Rabin tests; a random composite
integer will most likely fail after just one test. To generate both primes, this amounts to around
2(1−α)M ln 2 + 2(t− 1) times the expected time to decrypt using a 2M -bit modulus with CRT (see
estimates for decryption earlier in this section).

With t = 8 and α = 0.92, the time needed to generate a 1024-bit key is roughly 70 times the expected
time to decrypt using a 1024-bit modulus with CRT, while the time needed to generate a 2048-bit
key is roughly 130 times the expected time to decrypt using a 2048-bit modulus with CRT. Yet,
remember that these are just very rough estimates.

1α = 1−
∏k

i=1
pi−1

pi
, where p1, . . . , pk are the distinct small primes used in the sieving phase.
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A
Multi-prime RSA
In this section, multi-prime RSA is treated; ‘‘multi-prime’’ means that the modulus is the product of
three or more primes. The benefit of multi-prime RSA is lower computational cost for the decryption
and signature primitives, provided that the CRT (Chinese Remainder Theorem) is used. Better
performance can be achieved on single processor platforms, but to a greater extent on multiprocessor
platforms, where the modular exponentiations involved can be done in parallel. As of today, for a
level of security comparable to that of ordinary two-prime RSA, it is recommended that the number
of prime factors in the modulus be pursuant to the following table.

Bit length of modulus 1024 1536 2048
Maximal number of primes 3 4 5

For a thorough treatment of the security of multi-prime RSA, see [43].

To support multi-prime RSA, one has to update some of the definitions in this document. We refer
to Amendment 1 of PKCS #1 v2.0 [37] for a detailed description and confine ourselves to discussing
the most important modificiations of the decryption primitive RSADP (Subsection 1.2.4).

Let k be the number of prime factors of the modulus, and let p = r1, q = r2, r3, . . . , rk be the primes.
Let di be the inverse of e modulo ri − 1 for i ≥ 3:

e · di ≡ 1 (mod ri − 1).

Furthermore, let ti be the multiplicative inverse of r1 · . . . · ri−1 modulo ri for i ≥ 3. Following
Amendment 1 to PKCS #1 v2.0, we redefine the second representation as consisting of the quintuple
(p, q, dP, dQ,qInv) and the sequence of triplets (ri, di, ti), i = 3, . . . , k. The following steps need to
be added to RSADP.

2.6 Let mi = cdi mod ri, i = 3, . . . k.

2.7 Let R = r1 and for i = 3 to k do

2.7.1 Let R = R · ri−1.

2.7.2 Let h = (mi −m) · ti mod ri.

2.7.3 Let m = m + R · h.
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Remark. The algorithm used here is based on Garner’s algorithm (see [20] or Algorithm 14.71
in [36]). Yet, one may follow Garner’s algorithm more closely, rewriting steps 2.2-2.7 as a single
loop -- just reverse the order of p and q. For consistency with existing standards, however, it is
recommended that the first two primes p and q are treated separately from the additional primes.
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B
Mathematical background
The purpose of this section is to give a brief summary of the mathematics needed to understand the
RSA algorithm and why it works.

Recall that the public key is a pair (n, e) of integers, where n is the modulus and e is the public
exponent; the modulus n is the product of two distinct primes p and q. The private key contains
information about the private exponent d, which satisfies

(xe)d ≡ x (mod n) (B.1)

for any integer x. The private exponent d has the property that

e · d ≡
{

1 (mod p− 1)
1 (mod q − 1) , (B.2)

and our goal is to show that this is sufficient. For proofs of Fermat’s Theorem and the Chinese
Remainder Theorem, see [29] or any undergraduate textbook in number theory.

An important result is as follows.

Theorem 1 (Fermat’s Theorem) Let r be a prime and let x be an integer. Then

xj(r−1)+1 ≡ x (mod r)

for any nonnegative integer j.

This proposition immediately implies that

(xe)d ≡
{

x (mod p)
x (mod q) (B.3)

for any x if e and d satisfy (B.2). Namely, (B.2) means that e · d = j(p − 1) + 1 for some integer j

and similar for q.

The next step is to demonstrate that (B.3) implies (B.1). This is a consequence of the following result.

Theorem 2 (Chinese Remainder Theorem) Let r1, r2, . . . , rk be positive integers such that
GCD(ri, rj) = 1 whenever i 6= j. For any integers a1, a2, . . . , ak, the system of equations

y ≡ ai (mod ri)

has a unique solution y such that 0 ≤ y < r1r2 . . . rk.
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RSADP (Section 1.2.4) with the second representation of the private key is based on the Chinese
Remainder Theorem (CRT): With notations as in Section 1.2.4, Fermat’s Theorem implies that{

m1 ≡ cd (mod p)
m2 ≡ cd (mod q).

By CRT, there is exactly one solution m to the system of equations{
m ≡ m1 (mod p)
m ≡ m2 (mod q)

satisfying 0 ≤ m < n. This solution is the one given in step 2.5 in Section 1.2.4:

m = m2 + q ((m1 −m2)t mod p) ,

where t = qInv satisfies

q · t ≡ 1 (mod p).

Namely,

m2 + q ((m1 −m2)t mod p) ≡

 m2 + q(m1 −m2)t ≡ m2 + m1 −m2 ≡ m1 (mod p);

m2 (mod q).

This discussion is easily extended to the multi-prime setting (Appendix A).
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C
Test vectors
In this section, we give an example of the process of encrypting and decrypting a message with
RSAES-OAEP. The message is an octet string of length 16, while the size of the modulus in the
public key is 1024 bits. The second representation of the private key is used, which means that CRT
is applied in the decryption process.

The underlying hash function in the EME-OAEP encoding operation is SHA-1; the mask generation
function is MGF with SHA-1 as specified in Section 1.3.3 in part B.1 of this document.

Integers are represented by strings of octets with the leftmost octet being the most significant octet.
For example, 9202000 = 8c 69 50.

RSA key information

n, the modulus:
bb f8 2f 09 06 82 ce 9c 23 38 ac 2b 9d a8 71 f7 36 8d 07 ee d4 10 43 a4
40 d6 b6 f0 74 54 f5 1f b8 df ba af 03 5c 02 ab 61 ea 48 ce eb 6f cd 48
76 ed 52 0d 60 e1 ec 46 19 71 9d 8a 5b 8b 80 7f af b8 e0 a3 df c7 37 72
3e e6 b4 b7 d9 3a 25 84 ee 6a 64 9d 06 09 53 74 88 34 b2 45 45 98 39 4e
e0 aa b1 2d 7b 61 a5 1f 52 7a 9a 41 f6 c1 68 7f e2 53 72 98 ca 2a 8f 59
46 f8 e5 fd 09 1d bd cb

e, the public exponent:
(0x)11

p, the first prime factor of n:
ee cf ae 81 b1 b9 b3 c9 08 81 0b 10 a1 b5 60 01 99 eb 9f 44 ae f4 fd a4
93 b8 1a 9e 3d 84 f6 32 12 4e f0 23 6e 5d 1e 3b 7e 28 fa e7 aa 04 0a 2d
5b 25 21 76 45 9d 1f 39 75 41 ba 2a 58 fb 65 99

q, the second prime factor of n:
c9 7f b1 f0 27 f4 53 f6 34 12 33 ea aa d1 d9 35 3f 6c 42 d0 88 66 b1 d0
5a 0f 20 35 02 8b 9d 86 98 40 b4 16 66 b4 2e 92 ea 0d a3 b4 32 04 b5 cf
ce 33 52 52 4d 04 16 a5 a4 41 e7 00 af 46 15 03

dP , p’s exponent:
54 49 4c a6 3e ba 03 37 e4 e2 40 23 fc d6 9a 5a eb 07 dd dc 01 83 a4 d0
ac 9b 54 b0 51 f2 b1 3e d9 49 09 75 ea b7 74 14 ff 59 c1 f7 69 2e 9a 2e
20 2b 38 fc 91 0a 47 41 74 ad c9 3c 1f 67 c9 81
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dQ, q’s exponent:
47 1e 02 90 ff 0a f0 75 03 51 b7 f8 78 86 4c a9 61 ad bd 3a 8a 7e 99 1c
5c 05 56 a9 4c 31 46 a7 f9 80 3f 8f 6f 8a e3 42 e9 31 fd 8a e4 7a 22 0d
1b 99 a4 95 84 98 07 fe 39 f9 24 5a 98 36 da 3d

qInv, the CRT coefficient:
b0 6c 4f da bb 63 01 19 8d 26 5b db ae 94 23 b3 80 f2 71 f7 34 53 88 50
93 07 7f cd 39 e2 11 9f c9 86 32 15 4f 58 83 b1 67 a9 67 bf 40 2b 4e 9e
2e 0f 96 56 e6 98 ea 36 66 ed fb 25 79 80 39 f7

Encryption

M , the message to be encrypted:
d4 36 e9 95 69 fd 32 a7 c8 a0 5b bc 90 d3 2c 49

P , encoding parameters:
NULL

pHash = Hash(P ):
da 39 a3 ee 5e 6b 4b 0d 32 55 bf ef 95 60 18 90 af d8 07 09

DB = pHash‖PS‖01‖M :
da 39 a3 ee 5e 6b 4b 0d 32 55 bf ef 95 60 18 90 af d8 07 09 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 d4 36 e9 95 69
fd 32 a7 c8 a0 5b bc 90 d3 2c 49

seed, a random octet string:
aa fd 12 f6 59 ca e6 34 89 b4 79 e5 07 6d de c2 f0 6c b5 8f

dbMask = MGF (seed , 107):
06 e1 de b2 36 9a a5 a5 c7 07 d8 2c 8e 4e 93 24 8a c7 83 de e0 b2 c0 46
26 f5 af f9 3e dc fb 25 c9 c2 b3 ff 8a e1 0e 83 9a 2d db 4c dc fe 4f f4
77 28 b4 a1 b7 c1 36 2b aa d2 9a b4 8d 28 69 d5 02 41 21 43 58 11 59 1b
e3 92 f9 82 fb 3e 87 d0 95 ae b4 04 48 db 97 2f 3a c1 4e af f4 9c 8c 3b
7c fc 95 1a 51 ec d1 dd e6 12 64

maskedDB = DB⊕ dbMask:
dc d8 7d 5c 68 f1 ee a8 f5 52 67 c3 1b 2e 8b b4 25 1f 84 d7 e0 b2 c0 46
26 f5 af f9 3e dc fb 25 c9 c2 b3 ff 8a e1 0e 83 9a 2d db 4c dc fe 4f f4
77 28 b4 a1 b7 c1 36 2b aa d2 9a b4 8d 28 69 d5 02 41 21 43 58 11 59 1b
e3 92 f9 82 fb 3e 87 d0 95 ae b4 04 48 db 97 2f 3a c1 4f 7b c2 75 19 52
81 ce 32 d2 f1 b7 6d 4d 35 3e 2d

seedMask = MGF (maskedDB, 20):
41 87 0b 5a b0 29 e6 57 d9 57 50 b5 4c 28 3c 08 72 5d be a9
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maskedSeed = seed ⊕ seedMask:
eb 7a 19 ac e9 e3 00 63 50 e3 29 50 4b 45 e2 ca 82 31 0b 26

EM = maskedSeed‖maskedDB:
eb 7a 19 ac e9 e3 00 63 50 e3 29 50 4b 45 e2 ca 82 31 0b 26 dc d8 7d 5c
68 f1 ee a8 f5 52 67 c3 1b 2e 8b b4 25 1f 84 d7 e0 b2 c0 46 26 f5 af f9
3e dc fb 25 c9 c2 b3 ff 8a e1 0e 83 9a 2d db 4c dc fe 4f f4 77 28 b4 a1
b7 c1 36 2b aa d2 9a b4 8d 28 69 d5 02 41 21 43 58 11 59 1b e3 92 f9 82
fb 3e 87 d0 95 ae b4 04 48 db 97 2f 3a c1 4f 7b c2 75 19 52 81 ce 32 d2
f1 b7 6d 4d 35 3e 2d

C , the RSA encryption of EM :
12 53 e0 4d c0 a5 39 7b b4 4a 7a b8 7e 9b f2 a0 39 a3 3d 1e 99 6f c8 2a
94 cc d3 00 74 c9 5d f7 63 72 20 17 06 9e 52 68 da 5d 1c 0b 4f 87 2c f6
53 c1 1d f8 23 14 a6 79 68 df ea e2 8d ef 04 bb 6d 84 b1 c3 1d 65 4a 19
70 e5 78 3b d6 eb 96 a0 24 c2 ca 2f 4a 90 fe 9f 2e f5 c9 c1 40 e5 bb 48
da 95 36 ad 87 00 c8 4f c9 13 0a de a7 4e 55 8d 51 a7 4d df 85 d8 b5 0d
e9 68 38 d6 06 3e 09 55

Decryption

c mod p (c is the integer value of C):
de 63 d4 72 35 66 fa a7 59 bf e4 08 82 1d d5 25 72 ec 92 85 4d df 87 a2
b6 64 d4 4d aa 37 ca 34 6a 05 20 3d 82 ff 2d e8 e3 6c ec 1d 34 f9 8e b6
05 e2 a7 d2 6d e7 af 36 9c e4 ec ae 14 e3 56 33

c mod q:
a2 d9 24 de d9 c3 6d 62 3e d9 a6 5b 5d 86 2c fb ec 8b 19 9c 64 27 9c 54
14 e6 41 19 6e f1 c9 3c 50 7a 9b 52 13 88 1a ad 05 b4 cc fa 02 8a c1 ec
61 42 09 74 bf 16 25 83 6b 0b 7d 05 fb b7 53 36

m1 = cdP mod p = (c mod p)dP mod p:
89 6c a2 6c d7 e4 87 1c 7f c9 68 a8 ed ea 11 e2 71 82 4f 0e 03 65 52 17
94 f1 e9 e9 43 b4 a4 4b 57 c9 e3 95 a1 46 74 78 f5 26 49 6b 4b b9 1f 1c
ba ea 90 0f fc 60 2c f0 c6 63 6e ba 84 fc 9f f7

m2 = cdQ mod q = (c mod q)dQ mod q:
4e bb 22 75 85 f0 c1 31 2d ca 19 e0 b5 41 db 14 99 fb f1 4e 27 0e 69 8e
23 9a 8c 27 a9 6c da 9a 74 09 74 de 93 7b 5c 9c 93 ea d9 46 2c 65 75 02
1a 23 d4 64 99 dc 9f 6b 35 89 75 59 60 8f 19 be

h = (m1 −m2)qInv mod p :
01 2b 2b 24 15 0e 76 e1 59 bd 8d db 42 76 e0 7b fa c1 88 e0 8d 60 47 cf
0e fb 8a e2 ae bd f2 51 c4 0e bc 23 dc fd 4a 34 42 43 94 ad a9 2c fc be
1b 2e ff bb 60 fd fb 03 35 9a 95 36 8d 98 09 25

m = m2 + qh is equal to the integer value of the encoded message EM above. The intermediate values of the
decoding operation are similar to those of the encoding operation.
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Figure C.1: EME-OAEP encoding operation. pHash is the hash of the encoding parameters.
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Figure C.2: EME-OAEP decoding operation. If pHash’ equals the hash of the encoding parameters, then decryption
is considered successful.
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