
Off-the-Record Communication,
or, Why Not To Use PGP

Nikita Borisov
UC Berkeley

nikitab@cs.berkeley.edu

Ian Goldberg
Zero-Knowledge Systems

ian@cypherpunks.ca

Eric Brewer
UC Berkeley

brewer@cs.berkeley.edu

ABSTRACT
Quite often on the Internet, cryptography is used to pro-
tect private, personal communications. However, most com-
monly, systems such as PGP are used, which use long-lived
encryption keys (subject to compromise) for confidentiality,
and digital signatures (which provide strong, and in some
jurisdictions, legal, proof of authorship) for authenticity.

In this paper, we argue that most social communications
online should have just the opposite of the above two prop-
erties; namely, they should have perfect forward secrecy and
repudiability. We present a protocol for secure online com-
munication, called “off-the-record messaging”, which has
properties better-suited for casual conversation than do sys-
tems like PGP or S/MIME. We also present an implemen-
tation of off-the-record messaging as a plugin to the Linux
GAIM instant messaging client. Finally, we discuss how
to achieve similar privacy for high-latency communications
such as email.

Categories and Subject Descriptors
K.4.1 [Management of Computing and Information

Systems]: Public Policy Issues—Privacy ; E.3 [Data]: Data
Encryption; K.6.5 [Management of Computing and In-

formation Systems]: Security and Protection—Authenti-
cation

General Terms
Security

Keywords
Perfect Forward Secrecy, Deniability, Private Communica-
tion

1. INTRODUCTION
Originally a medium for the transfer of technical infor-

mation, data, and research, the Internet has grown rapidly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’04, October 28, 2004
Copyright 2004 ACM 1-58113-968-3/04/0010 ...$5.00.

over the last decade to become the basis for a wide variety of
forms of communication, ranging from electronic commerce,
to the sharing of music and video, to social conversation.

Along with the growing population of the Internet came
growing concern over the security of the data flowing across
it. Your online communications could be observed by any
number of third parties on their way to their destinations.
Even data residing on your own PC could be vulnerable if
you were unlucky enough to open the wrong email attach-
ment.

The protections developed were twofold: use firewalls and
host security to lock down the endpoints, and use cryp-
tography to protect the information in transit. Popular
cryptographic systems, such as SSL [9], PGP [6, 33], and
S/MIME [4], were developed and used to protect diverse
forms of data.

The majority of electronic commerce is protected by SSL.
What about social communication? Some of it takes place
over email, for which PGP and S/MIME are common tools
of protection. And an increasing portion of it uses instant
messaging protocols, such as AIM [3], MSN [20], ICQ [16],
and many others. To protect instant messages there are sev-
eral alternatives. Trillian [31] was the first to have a widely
deployed solution for users of its client, called SecureIM,
which provided basic secrecy but no authentication. AOL
followed with its own protocol [2], functionally similar to
S/MIME. One can also use PGP in an instant-messaging
code with the appropriate glue logic. [14] However, these
approaches offer very different security and privacy proper-
ties. Which is right?

In this paper, we examine what kind of privacy is nec-
essary for social communications. We argue that not only
must encryption be used to hide the contents of the conver-
sation, but also, the encryption must provide perfect forward
secrecy to protect from future compromises. Additionally,
authentication must be used to ensure that the person on
the other end is who they claim to be. However, the au-
thentication mechanism must offer repudiation, so that the
communications remain personal and unverifiable to third
parties. Only with these properties can privacy similar to
real-world social communications be achieved.

However, none of the mechanisms currently used for so-
cial communications have all of these properties. PGP and
S/MIME provide encryption and digital signatures, but the
encryption keys are typically long-lived, and the digital sig-
natures are non-repudiable. The Trillian SecureIM scheme
provides perfect forward secrecy, but performs no authen-
tication at all. We therefore propose a new protocol for

protecting social interactions in the context of instant mes-
saging.

In section 2 we motivate our privacy objectives. Section 3
gives an overview of relevant cryptographic primitives, and
section 4 contains an exposition of our off-the-record instant-
messaging protocol. In section 5 we describe our implemen-
tation of this protocol in a common instant messaging sys-
tem. In section 6, we consider how to achieve similar privacy
in the high-latency context of email. Finally, we review some
related work in section 7 and in section 8 we conclude.

2. MOTIVATION
When Alice and Bob are talking in person, it is easy to

keep their conversation private. Alice can make sure no one
is around, and, with the exception of a hidden tape recorder,
she can be reasonably sure that no one else will hear the con-
versation. Further, the only evidence anyone can obtain of
the conversation is Bob’s word about what happened. Such
private, off-the-record conversations are common and useful
in both social and business contexts. There is even a recog-
nized need to have similar private conversations by telephone
— it is illegal to tap or record a phone conversation without
the parties’ consent or a court order.

What happens when Alice and Bob want to have such a
private conversation online? Today, being somewhat crypto-
savvy, they would use PGP. Alice encrypts her messages to
Bob’s public encryption key, and signs them with her own
private signature key. That way, only Bob can read the
messages, and Bob is assured that Alice is the one who sent
them.

Unbeknownst to Alice and Bob, however, the eavesdrop-
per Eve is listening (good thing they used crypto!) and
storing all of the encrypted messages, which she can’t read.

Some time later, Eve manages to obtain Bob’s private key,
for example though a black bag job [12], Magic Lantern [28],
or a subpoena. Eve now can read all of Bob’s past email that
she’s collected over the years. In addition, Eve has evidence
in the form of a cryptographic digital signature that Alice
was the one who sent the messages.

This doesn’t sound like a private conversation at all! After
the fact, a cryptographically verifiable transcript of Alice
and Bob’s conversation has been recovered.

2.1 What went wrong?
You could say that Bob losing control of his private key

was the problem. But with today’s easily-compromised per-
sonal computers, this is an all-too-likely occurence. We
would really prefer to be able to handle such failures grace-
fully, and not simply give away the farm.

There were two main problems:

• The compromise of Bob’s secrets allowed Eve to read
not only future messages protected with that key, but
past messages as well.

• When Alice wanted to prove to Bob that she was the
author of the message, she used a digital signature,
which also proves it to Eve, and any other third party.1

When we think about private messages in the context of
social conversation, we really want a system with different

1Note that if Alice had not signed the message, then third
parties would not have proof of Alice’s authorship of the
message, but then neither would Bob.

properties: we want only Bob to be able to read the mes-
sage, and Bob should be assured that Alice was the author;
however, no one else should be able to do either. Further,
after Alice and Bob have exchanged their message, it should
be impossible for anyone (including Alice and Bob them-
selves) to subsequently read or verify the authenticity of the
encrypted message, even if they kept a copy of it. It is clear
that PGP does not provide these desirable properties.

This paper introduces a protocol for private social commu-
nication which we call “off-the-record messaging”. The
notion of an off-the-record conversation well-captures the se-
mantics one intuitively wants from private communication:
only the two parties involved are privy to the contents of the
conversation; after the conversation is over, no one (not even
the parties involved) can produce a transcript; and although
the participants are assured of each other’s identities, nei-
ther they nor anyone else can prove this information to a
third party. Using this protocol, Alice and Bob can enjoy
the same privacy in their online conversations that they do
when they speak in person.

3. CRYPTOGRAPHIC PRIMITIVES
In this section, we outline the cryptographic primitives we

will use to achieve our goal of off-the-record communication.

• Perfect forward secrecy will be used to ensure our
past messages cannot be recovered retroactively.

• Digital signatures will be used so that Bob knows
with whom he’s communicating.

• Message authentication codes will be used to prove
Alice’s authorship of a message to Bob, while at the
same time preventing such a proof to third parties.

• Malleable encryption will be used to provide for
forgeability of transcripts, repudiation of contents, and
plausible deniability.

3.1 Perfect forward secrecy
The most obvious feature we need from our off-the-record

messaging system is confidentiality: only Alice and Bob
should be able to read the messages that make up their
online conversation. Since we assume everything transmit-
ted over the Internet is public information, we need to use
encryption. Now our problem is reduced to ensuring that
the decryption keys for the messages never fall into hands
other than Alice’s and Bob’s.

Alice’s and Bob’s abilities to safeguard their decryption
keys becomes paramount. If at any later time, some de-
cryption key is revealed, perhaps by breaking into one of
their computers, or through legal or coercive means, any
messages — past, present, or future — encrypted for that
key would no longer be secure.

We circumvent this problem by using short-lived encryp-
tion/decryption keys that are generated as needed and dis-
carded after use. These keys also have the property that
it is impossible to rederive them from any long-term key
material.

A setup such as this provides a property known as perfect

forward secrecy [15]: once Alice and Bob both discard
any given short-lived key, there is no longer any amount
of information that can be collected through any means to

recover the key, and thus decrypt messages encrypted with
that key.2

Not only will Eve be unable to reconstruct the key, but
Alice or Bob themselves will be unable to read those past
messages. This strong property ensures the confidentiality
behaviour desired in off-the-record communication.

To provide perfect forward secrecy, we use the well-known
Diffie-Hellman key agreement protocol [10].3 Diffie-Hellman
allows two parties communicating over a public channel to
agree on a shared secret, without revealing it to an eaves-
dropper. Briefly, the key agreement starts with some public
parameters — a prime p and a generator g of a subgroup of
Z∗

p of large prime order. Alice and Bob pick two numbers
(the private keys), xA and xB respectively, and they trans-
mit gxA and gxB (the public keys) over a public channel.
Alice can then compute the shared secret gxAxB = (gxB)xA ;
Bob can compute the same secret as (gxA)xB . This now-
shared secret is used to create the short-lived encryption
key. However, it is presumed to be intractable for Eve to
compute the secret, since xA and xB are unknown to her.

3.2 Digital signatures and non-repudiation
Digital signatures are a popular means of authenticating

the author of a message; they have a number of important
properties. Since digital signatures use public key cryptog-
raphy, it is not necessary for every pair of communicating
parties to maintain a long-term shared secret; instead, ev-
ery party needs to have a single public key that is known to
everyone else and used to verify their signatures. Therefore,
n parties only need O(n) instead of O(n2) keys, and the
public keys need not be kept secret. Some popular digital
signature algorithms include RSA [29] and DSS [24].

In addition, these signature keys can be long-lived keys,
unlike the short-lived encryption keys, above. The reason is
that if Bob verifies Alice’s signature on a piece of data, and
then the next week, Alice’s signature key is compromised,
it doesn’t affect the fact that that old signature was valid.
On the other hand, if an encryption key is used to protect
a piece of data, and then the next week, the encryption key
is compromised, that old data is no longer protected.

Since compromises of signature keys can’t affect old data
the way compromises of encryption keys can, it is acceptable
to keep the same signature key around for a long time; you
never protect any additional data by changing your signa-
ture key the way you do by changing your encryption key. In
addition, it is desirable to keep your signature keys around
for a long time, since that simplifies key distribution: making
sure all of your friends have a correct copy of your signature
key.

Another important consequence of digital signatures is
that a digital signature may be verified by anyone, and as
such can be used to prove to a third party that Alice signed
a message, without Alice’s cooperation.

This last property is known as non-repudiation — Alice
is unable at a later time to disclaim authorship of a message
that she signed. As we motivated in the previous section,
this is not a desirable property of private communications.
Alice may not want to empower Bob with the ability to

2We are of course assuming that the cipher itself is strong
enough so as to resist being broken without the key.
3For clarity, we describe only the simplest form of Diffie-
Hellman key agreement here; for more detailed versions of
the protocol, see [7].

prove to third parties about what she told him in private;
this concern is amplified by moves of many governments to
associate legal power with digital signatures. Even if Al-
ice trusts Bob, such trust may be compromised by someone
breaking into Bob’s computer, or legal proceedings forcing
Bob to give up past messages from Alice. The burden of non-
repudiation will limit what Alice may be comfortable with
saying, a restriction undesirable for simple private commu-
nication between two parties.

We want repudiability: no one should be able to prove
Alice sent any particular message, whether she actually did,
or not. For this reason, we never use a digital signature
to prove Alice’s authorship of any message. The only data
we ever sign are Alice’s values of gxA in the Diffie-Hellman
protocol. Everyone, including Bob and Eve, can then be
assured that Alice was really the one who chose the value of
xA that produced gxA , but that is all they know.

Bob, on the other hand, has extra information: xB, and
with it the shared secret gxAxB . We will use this shared
secret next to prove Alice’s authorship of the message to
Bob, and only to Bob.

3.3 MACs and repudiability
Although we want repudiability for our private, off-the-

record communication, we still need authentication in order
to get security; Bob needs to be assured that Alice is in fact
the one sending him the messages, even if we insist that he
be unable to prove that fact to anyone else.

For this purpose, we turn to message authentication codes,
or MACs. A MAC is a function computed on a message us-
ing a secret “MAC key”, which is shared by Alice and Bob.
(A MAC can be thought of as a keyed hash function.) Alice
uses her copy of the MAC key to compute a MAC of her
message, and sends this MAC along with her message in a
secure transmission; Bob verifies the integrity and authen-
ticity of the message by computing the MAC on the received
message using his copy of the shared MAC key, and compar-
ing it to the MAC that was transmitted. A popular MAC
construction is HMAC [17], based on a one-way hash func-
tion.

Since it is necessary to know the secret key to generate a
proper MAC, if the results match, Bob knows that someone
with knowledge of the shared MAC key must have sent this
message. Since he presumably knows that he didn’t send it
himself, and only he and Alice know the MAC key, it must
have been Alice who sent the message. Also, Bob knows that
the message has not been modified since Alice generated it,
since otherwise the MACs would not match.

However, a MAC can’t provide non-repudiation: Eve can’t
look at the MAC’d message and determine that Alice sent it,
because Eve doesn’t know the MAC key. Further, Bob can’t
even prove to a third party that Alice sent the message; all
he can prove is that someone with the MAC key generated
it, but for all anyone knows, Bob could have made up the
message himself!

These properties of a MAC make it perfect for off-the-
record communication. Only Bob can be assured that Alice
sent the message, and that the message has not been mod-
ified, yet no one (not even Bob) can prove this fact to any
third party.

3.4 Malleable encryption and forgeability
In off-the-record messaging, we would like to have an even

stronger property than repudiability: forgeability. Not
only do we want Bob and Eve to be unable to prove that
Alice sent any given message, we want it to be very obvious
that anyone at all could have modified, or even sent it. To do
so, we use a malleable encryption scheme, which makes
it easy to alter the ciphertext in such a way as to make
meaningful changes in the plaintext, even when you don’t
know the key.

In some encryption schemes, such as certain modes of a
block cipher, it is difficult to produce ciphertexts that de-
crypt to meaningful plaintexts without knowing the key.
Even if Eve intercepts Alice’s ciphertext, any changes she
might make will likely result in the plaintext becoming ran-
dom bits, rather than, say, English text. In general, it is
poor practice to rely on this difficulty to authenticate a mes-
sage, as there are truncation and other attacks which Eve
might be able to use. However, such attacks may be difficult
to apply in some cases, and we want to make it absolutely
clear that anyone could have changed a message.

We therefore use a stream cipher. A stream cipher en-
crypts the plaintext by masking it with a keystream using
the exclusive-OR operation; to decrypt, the same exclusive-
OR is used to remove the keystream and reveal the plaintext.
This encryption is malleable, as a change to any bit in the
ciphertext will correspond to a change in the correspond-
ing bit in the plaintext. In particular, if Eve can guess the
plaintext of a message, she can then change the ciphertext
to decrypt to any other message of the same length, with-
out knowing the key. Therefore, a message encrypted with a
stream cipher does not prove integrity or authenticity in any
way. Of course, Alice can still use a MAC to prove to Bob
that her messages are indeed hers; in the next section we will
describe some extra safeguards our protocol takes to ensure
that no one else can use the MAC to verify authenticity.

4. THE OFF-THE-RECORD MESSAGING
PROTOCOL

In this section we shall proceed to build up a messaging
protocol that achieves the desirable properties that we de-
scribed in the previous sections through the use of the cryp-
tographic primitives outlined above. We designed the proto-
col for low-latency communication protocols, such as instant
messaging. Section 6 discusses how it might be changed to
accommodate higher-latency communication, such as email.

4.1 Encryption
First, we want to ensure that a message is kept private;

therefore, we must encrypt it. As discussed in the previ-
ous section, we want to use malleable encryption to provide
plausible deniability. A stream cipher is best suited for this
purpose. In keeping with current standards, we use AES [23]
in counter mode [11]. The encryption key is chosen using a
Diffie-Hellman key agreement to establish a shared secret.

To ensure that the keys are short-lived, Alice and Bob
can choose to perform a new Diffie-Hellman key agreement,
discarding the old key and xA, xB values. At this point, it
will be impossible for Alice or Bob to decrypt old messages,
even with help from an attacker who might remember the
transmitted values of gxA and gxB , without violating the
Diffie-Hellman security assumption. Thus perfect forward
secrecy is achieved, as all messages encrypted with the pre-
vious key are now unreadable.

To reduce the window of vulnerability, when it is possible
to decrypt old messages, Alice and Bob should re-key as fre-
quently as possible. Fortunately, a Diffie-Hellman computa-
tion is fairly cheap — it involves only two modular exponen-
tiations. Therefore, most computers will be able to re-key
with each message; even devices with limited computational
power, such as PDAs, should be able to re-key at least once
a minute. To avoid extra messages during such re-keying,
we combine Diffie-Hellman exchanges with normal message
transmission. Each message includes a Diffie-Hellman pub-
lic key (gx) that will be used to derive the key for subsequent
messages. So, a message exchange might look as follows:

A → B : g
x1

B → A : g
y1

A → B : g
x2 , E(M1, k11)

B → A : g
y2 , E(M2, k21)

A → B : g
x3 , E(M3, k22)

where kij = H(gxiyj), the result of a 128-bit hash function
H , such as truncated SHA-1 [22], on an element of Z∗

p , and
E(M, k) denotes encryption in AES counter mode using the
key k.4 Each message is encrypted using the shared secret
derived from the last key received from the other party and
the last key that has been previously sent to the other party.
We do not use the key disclosed in one message until the
following message, for reasons of authentication, discussed
below. For example, in the last message above, Alice has re-
ceived gy2 from Bob, and the last key she has sent previously
is gx2 , so the key used to encrypt a message is H(gx2y2). In
practice, a key ID should also be used in the message to en-
sure that both the sender and the receiver know which kij

is being used, since the protocol does not require that Alice
and Bob take turns sending messages to each other.

4.2 Forgetting Keys
To achieve perfect forward secrecy, Alice and Bob must

forget old keys once a new key exchange is complete.5 Ide-
ally, after Alice sends Bob the key gxn , she would like to
be able to forget xn−1. However, since messaging protocols
are typically asynchronous, it is possible that there is still a
message in transit from Bob that was encrypted using the
previous gxn−1 key; if Alice had thrown away the key, she
would no longer be able to read the message. Therefore,
Alice must remember the old gxn−1 key until she receives
a message from Bob that uses the new gxn key. Assuming
that messages are delivered in order, all subsequent messages
from Bob will be encrypted using the new key.6

If Alice sends several messages to Bob in a row without
receiving a response, announcing keys gxn . . . gxm , she will
need to remember the entire sequence of keys xn−1 . . . xm

until she receives a message from Bob, since she cannot be
sure which key the next message from Bob will be encrypted
under. Since using different keys does not help reduce the

4The bit representation of E(M,k) will of course also include
the initial counter value, which will be chosen to be unique
for each message sent.
5For a secure method of forgetting keys, see [8].
6If out-of-order delivery is a concern, Alice can remember
the gxn−1 for a short time window after receiving Bob’s mes-
sage to allow other possibly delayed packets to arrive.

window of vulnerability, we only generate a new key upon
receiving a reply from Bob. This way, Alice need only re-
member at most two of her own keys at a time. Upon re-
ceiving a response that uses gxn , she can forget xn−1 and
generate a new gxn+1 to be announced in the next message
she sends.

Of course, if Bob does not reply for a long time, Alice will
be able to decrypt a number of her old messages, leaving a
large window of vulnerability. To address this problem, Bob
should periodically send an empty message acknowledging
receipt of a new key from Alice. Alice can also forget the
old keys after sufficient time has elapsed that it is highly
unlikely that a message from Bob using the old key is still
in transit.

4.3 Authentication
As discussed in the previous section, we use a MAC for

authenticating each message. To generate a MAC key, we
apply a one-way hash function to the decryption key. This
ensures that anyone who is able to read a message can also
modify it and update the MAC. For example, even if Eve can
somehow recover the encryption key (for example, due to a
poor random number generator) and decrypt the messages,
she will not be able to convince anyone else that it was Alice
or Bob and not her who wrote the message.

The encryption key is itself the result of a hash of the
Diffie-Hellman shared secret, which also needs to be authen-
ticated in some way. We accomplish this by digitally signing
the initial Diffie-Hellman exchange:

A → B : Sign(gx1 , kA), KA

B → A : Sign(gy1 , kB), KB

Where ka, KA are Alice’s private and public long-lived
signature keys, and kb, KB are Bob’s. If Bob already knows
Alice’s public key, he will be assured that gx1 indeed came
from Alice, and therefore the secret gx1y1 will only be known
to the two of them. He can then treat messages authenti-
cated with the key H(gx1y1) as truly coming from Alice.

Note that this is a hybrid approach to authentication,
using both digital signatures and MACs. Digital signatures
allow us to avoid the requirement of maintaining O(n2) pre-
established shared secrets — a shared secret is established
on the fly whenever communication is needed. However,
the use of MACs to authenticate the actual messages allows
repudiation.

We only need to use a digital signature on the initial key
exchange. In further key exchanges, we use MACs to au-
thenticate a new key using an old, known-authentic shared
secret. That is, a protocol message looks like:

gxi+1 , E(Mr, kij),

MAC({gxi+1 , E(Mk, kij)}, H(kij))

So, if the initial authentication key is known to be secure,
then further ones will be secure as well. Note that we cannot
use ki+1,j to encrypt and authenticate this message, since
the recipient will not be able to verify its authenticity.

4.4 Revealing MAC keys
To add an extra measure of privacy, we do something

that at first seems surprising: after Alice knows all of the
messages she’s sent to Bob which were MAC’d with a given

MAC key have been received, Alice publishes that MAC key
as part of her next message.

Note what this has accomplished: Bob doesn’t need to
rely on this key any more, since he’s already checked all of
the messages authenticated by that key. However, now any-
one can create arbitrary messages that have this MAC key,
and no one can rule out any particular person as a potential
author of the message. This can be seen as the analogue
of perfect forward secrecy for authentication: anyone who
recovers the MAC key in the future is unable to use it to
verify the authenticity of past messages.

When can Alice be sure that Bob has successfully received
all the messages signed with a certain MAC key? If she re-
ceives a message from Bob encrypted with ki+1,j , she can
be sure he received a message encrypted with kij′ . However,
Alice might have sent several messages encrypted with kij′ ,
some of which may not have been yet received. Nonethe-
less, she can be sure that all messages authenticated with
ki−1,j′′ have been received, so she may reveal all keys of the
form H(ki−1,j′′) that have been used. With more careful
bookkeeping, Alice may be able to reveal MAC keys sooner.

5. AN IMPLEMENTATION OF OFF-THE-
RECORD MESSAGING

A natural application of the off-the-record messaging pro-
tocol is instant messaging (IM). IM is a popular way to have
light-weight, informal conversations; several protocols [3, 16,
20] boast millions of users. However, these protocols do not
incorporate end-to-end security, which limits their use. Peo-
ple are reluctant to use IM to discuss confidential business
issues or sensitive personal information.

It is important that a secure instant messaging proto-
col achieve the “off-the-record” properties that we have de-
scribed in this paper. Much of the popularity of IM is driven
by the ability to have informal, social conversations [21]; a
security protocol must reflect this pattern of usage and avoid
properties such as non-repudiation that would destroy the
informal atmosphere.

5.1 Design
We have chosen to build our off-the-record messaging pro-

tocol on top of an existing IM protocol, using it as an under-
lying transport. A message is first encrypted and authen-
ticated using our protocol, and then the result is encoded
as a text message and sent as a regular instant message.
In this way, our solution is easy to integrate with existing
protocols and clients, in the manner of a plugin, and we
can avoid duplicating features of existing protocols, such as
buddy lists.

Another advantage of running over an existing protocol
is the potential for incremental deployment: a user can use
their IM client to communicate with both people who have
the secure messaging plugin and those who don’t. To sup-
port these two modes, the plugin must keep a list of which
buddies support secure communication and which don’t.
This list is populated automatically: the first time Alice
sends a message to another user, Bob, it is sent unencrypted.
However, we append an identifier to the end of the message
to indicate that Alice supports the secure plugin. Upon re-
ceiving a message with such an identifier, the plugin initiates
the Diffie-Hellman exchange and uses secure communication
from then on. If, however, we receive an unencrypted mes-

sage without such an identifier, we assume that the sender
can only handle unencrypted messages and make a note of
that in the list.

During the initial Diffie-Hellman key exchange, we notify
the user that we are about to start secure communication
and display the fingerprint of the other party’s public key. A
more cautious user will verify the fingerprint out-of-band; for
others, a man-in-the-middle attack is possible at this point.
We record the public key value and make sure the same
key is used in future sessions. Thus, a successful impostor
must be able to carry out an active attack during the first
and every subsequent session; failure to do so will result in
detection. This model of handling public keys is analogous
to that used in SSH [32, 25], and has proven an effective way
to distribute public keys in the absence of a widely-deployed
public key infrastructure. Of course, if a public key can be
securely obtained by other means, it can be imported into
the key store and used in the future.

A potential problem is that, while the protocol we describe
is session-oriented, most of the instant messaging protocols
are connectionless. The off-the-record messaging protocol
maintains a virtual session that lasts until the IM client is
terminated, or until some period of inactivity. (The latter
condition is necessary since IM clients are often left running
for many days, on unattended computers.) However, it may
occur that Alice terminates her end of a session while Bob’s
is still active (e.g. Alice logged out and then logged back
in). If Bob now sends Alice a message, she will not be able
to read it, since she has forgotten the encryption key.

We address this by maintaining a cache of the last out-
going message, and creating a NAK (negative acknowledg-
ment) message. When Alice receives the unreadable mes-
sage, she sends a NAK, along with the initial message of a
new session. Once the session is established, Bob re-sends
the cached message, which will now be readable by Alice.
The message need only be cached for a short time (several
seconds), to account for the expected latency of the under-
lying IM protocol in delivering the NAK. In pathological
cases, Bob’s message will be lost, but we hope that these
will occur rarely enough that dropping the message will not
impose a great burden on the participants; typically, Alice
would simply ask Bob to send the message again.

5.2 Implementation
We implemented the off-the-record messaging protocol as

a plugin for the popular Linux IM client GAIM. The im-
plementation consists of two parts: a generic library that
implements the messaging protocol, and a GAIM-specific
portion that implements the plugin interface and uses the
library. The library will simplify the task of creating plugins
for other IM clients, and maintaining compatibility. (GAIM
implements multiple protocols, so it can be used with AIM,
ICQ, and many others.)

The plugin communnicates with the library using a sim-
ple API, shown in Figure 1. The function send message and
receive message are used to process outgoing and incom-
ing messages. Depending on the state saved in the context,
the messages are either encrypted or sent in the clear. The
functions return the new (encrypted/decrypted) message,
its length, and a result code to indicate whether the mes-
sage was encrypted, sent in the clear, should be ignored (a
protocol message that does not carry user data), or if there
was a protocol error. The API also includes a method (not

shown) to set a UI-callback that is invoked when the library
needs to communicate with the user; for example, when an
unknown user’s key is seen for the first time. The contexts
are used to manage several simultaneous conversations with
a number of different users.

We use libgcrypt [13] library for the cryptographic func-
tions, using AES [23] for encryption, RSA [29] for digital
signatures, and SHA1-HMAC [22, 17] for MAC authenti-
cation. Our tool uses /dev/random for generating random
keys. More details on the current status of our implementa-
tion are available at http://www.cypherpunks.ca/otr/.

5.3 Measurements
We have performed a simple micro-benchmark of the pro-

tocol library to determine how much overhead it imposes
on a user. Our test consisted of simulating two participants
who take turns sending each other messages. On our test
computer — a 450MHz Pentium III running Linux — we
observed the benchmark running at about 9 round-trips per
second, with varying message sizes not having significant
impact. Each round-trip includes two message encryptions,
two decryptions, and two key generations. Therefore, one
participant could send and receive up to 18 messages per
second (36 messages total). This is significantly faster than
most people can type, so we believe that the off-the-record
protocol will not have a noticeable performance impact. Our
subjective observations while using the off-the-record plugin
agree; we noticed no performance difference between secure
and insecure communication.

6. EMAIL
Although a large portion of personal communication has

shifted to instant messaging, much of it is still done over
email; the asynchronous nature of the medium makes it
suitable in contexts where instant messages are not. Pri-
vacy expectations of email conversations are lower, as it is
common for the other party to keep a record of all incom-
ing messages. However, the tools commonly used to protect
email — PGP and S/MIME — still provide the wrong kind
of privacy properties. When Alice sends a personal email to
Bob, it is usually not her intent that Bob be able to prove
to anyone else what she said; and yet her only option to
prove her identity with the current tools is to use a digital
signature.

The high latency of email communication makes using our
“off-the-record” protocol impractical in the setting of email.
Before Alice can send her first message, our protocol requires
a key exchange to be completed. This means waiting for Bob
to send his share of the Diffie-Hellman key, which requires
him to be online. But the possibility that Bob is offline
could very well be the reason Alice is using email in the first
place!

However, there is a solution Alice can use in this case,
called ring signatures [30]. A digital signature can proves
that Alice sent a message. A ring signature extends this
concept and can be used to prove that, given a set of peo-
ple, some member of the set sent the message, but it is
impossible to determine which one. So Alice can send her
message signed with a ring signature for the set {Alice, Bob}
(and encrypted to Bob.) In this case, Bob will be able to
verify that it indeed came from Alice (since he knows he
did not send it himself), but will not be able to prove this
to anyone else, since he can just as easily generate the ring

ENC_CTX new_context(unsigned char * message, int len);

unsigned char * send_message(ENC_CTX context,

unsigned char * message, int len, int *rlen, int *result);

unsigned char * receive_message(ENC_CTX context, unsigned char *

message, int len, int *rlen, int *result);

Figure 1: The generic off-the-record protocol API.

signature himself. Ring signatures have been implemented
as an extension to PGP [19].

Ring signatures are similar to MACs in that they confine
the authorship to a set of participants who have a certain
secret key (or keys). Unlike MACs, however, they can be
verified by people outside the set. If Eve were able to obtain
a copy of the message, she could prove to anyone that one of
Alice or Bob, and not her, had sent it. It is not clear what
the implications are of such a proof, yet Alice certainly has
less privacy than in the off-the-record case. With a non-
interactive protocol and a risk of compromise of Bob’s keys,
there is no way to avoid the possibility of such a proof. At
best, it can be mitigated with short-lived signature keys:
Alice can publish signature keys after she is sure all messages
signed with them have been received and verified by Bob.
This would invalidate all signatures with those keys.

If Alice and Bob maintain a regular correspondence, they
can use the off-the-record protocol for every message after
the first one. Alice can include gx with her original message.
When Bob responds, he should send gy signed with his pri-
vate key, and his response encrypted and authenticated by
the keys derived from gxy. Alice and Bob can continue com-
municating this way without using digital signatures for as
long as they are able to store copies of the current Diffie-
Hellman keys. Due to the high latency of email, the window
of vulnerability for compromising a message will certainly
be longer; however, their communications will still be more
private than if they had used PGP or S/MIME.

7. RELATED WORK
Perfect forward secrecy has been long recognized as a de-

sirable feature, and several protocols use it for secure com-
munications [5, 25, 26, 32]; some modes of TLS [9] also pro-
vide PFS. Interestingly enough, the idea of providing repu-
diability as a feature seems less explored. Certainly, many
protocols use MACs for authentication; however, they are
used for performance reasons and not to guarantee repudi-
ation. The SKEME [18] protocol shares many design goals
with our protocol; it also provides repudiable authentication
and perfect forward secrecy. It avoids using digital signa-
tures entirely, since it is concerned not only with protecting
the privacy of the contents of the conversation, but also with
concealing the fact that Alice and Bob ever talked. Abadi’s
proposed a similar protocol [1], with the extension that it
is possible to hide even Alice’s willingness to talk to Bob.
Our protocol has focused on privacy rather than anonymity
since the instant messaging context makes it difficult to con-
ceal the identity of the participants. If anonymity is desired,
one can use either SKEME or Abadi’s private authentica-
tion instead of the signed Diffie-Hellman key exchange in
our protocol.

The TESLA broadcast authentication protocol [27] is sim-
ilar to ours in that it reveals the MAC key after a time; how-

ever, it does this for the purpose of efficient key distribution
rather than to allow after-the-fact forgeries.

8. CONCLUSIONS
While the strong proofs provided by digital signatures in

cryptographic packages like PGP and S/MIME are useful
for signing contracts, most casual conversations online do
not require, and in fact, should not have, that level of per-
manence associated with them.

In this paper, we have developed the “off-the-record mes-
saging” protocol, which allows users to communicate online
in a repudiable, and perfect forward secret manner, while at
the same time, maintaining confidentiality and authenticity
assurances.

We have implemented the protocol as a plugin for a popu-
lar Linux IM client, and we plan to extend support to other
IM systems, including Windows-based ones, and possibly
email systems as well. Our hope is to create many opportu-
nities for people to have private, off-the-record conversations
on the Internet.

9. ACKNOWLEDGMENTS
We would like to thank Russell O’Connor for discussions

about social implications of digital signatures that moti-
vated our work, Adam Back and David Wagner for com-
ments on earlier versions of this paper, Len Sassaman for
continued encouragement to publish our results and release
the source code, and the anonymous reviewers for their many
insightful suggestions.

10. REFERENCES
[1] Mart́ın Abadi. Private authentication. In Privacy

Enhancing Technologies Workshop, 2002.

[2] Inc. America Online. Aim personal certificates.
http://enterprise.aim.com/products/aim/personalcerts.

[3] America Online, Inc. AOL Instant Messenger.
http://www.aim.com/.

[4] Editor B. Ramsdell. S/MIME version 3 message
specification. RFC2633, June 1999.

[5] I. Brown, A. Back, and B. Laurie. Forward secrecy
extensions for OpenPGP. Internet Draft, October
2001.

[6] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer.
OpenPGP message format. RFC2440, November 1998.

[7] Ran Canetti and Hugo Krawczyk. Analysis of
Key-Exchange Protocols and Their Use for Building
Secure Channels. In Theory and Application of
Cryptographic Techniques, pages 453–474, 2001.

[8] Giovanni Di Crescenzo, Niels Ferguson, Russell
Impagliazzo, and Markus Jakobsson. How to Forget a
Secret. In STACS 99, Lecture Notes in Computer
Science 1563, pages 500–509. Springer-Verlag, 1999.

[9] T. Dierks and C. Allen. The TLS protocol version 1.0.
RFC2246, January 1999.

[10] W. Diffie and M. Hellman. New Directions in
Cryptography. In IEEE Transactions on Information
Theory, pages 74–84, June 1977.

[11] M. Dworkin. Recommendation for block cipher modes
of operation: Methods and techniques. NIST Special
Publication 800-38A, December 2001.

[12] Electronic Privacy Information Center. United States
v. Scarfo (Key-Logger Case).
http://www.epic.org/crypto/scarfo.html.

[13] Free Software Foundation. libgcrypt.
http://directory.fsf.org/security/libgcrypt.html.

[14] gaim-e project. gaim-e encryption plugin.
http://gaim-e.sourceforge.net/.

[15] C.C. Günther. An identity-based key-exchange
protocol. In Advances in Cryptology —
EUROCRYPT, pages 29–37, 1989.

[16] ICQ, Inc. ICQ.com. http://www.icq.com/.

[17] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-hashing for message authentication. RFC2104,
February 1997.

[18] Hugo Krawczyk. SKEME: A versatile secure key
exchange mechanism for internet. In Symposium on
Network and Distributed Systems Security (NDSS),
1996.

[19] Lance Cottrell, Pr0duct Cypher, Hal Finney, Ian
Goldberg, Ben Laurie, Colin Plumb, or Eric Young7

Signing as one member of a set of keys.
http://www.abditum.com/ringsig/.

[20] Microsoft Corporation. .NET Messenger Service.
http://messenger.msn.com/.

[21] B. A. Nardi, S. Whittaker, and E. Bradner. Interaction
and outeraction: Instant messaging in action. In ACM
2000 Conference on Computer Supported Cooperative
Work, pages 79–88, Philadelphia, PA, 2000.

7This implementation was published anonymously and
signed by a ring signature with the keys of the authors listed.

[22] National Institute of Standards and Technology.
Secure hash standard (SHS). Federal Information
Processing Standards Publication 180-1, April 1995.

[23] National Institute of Standards and Technology.
Announcing the advanced encryption standard (AES).
Federal Information Processing Standards Publication
197, November 2001.

[24] National Institute of Standards and Technology.
Digital signature standard (DSS). Federal Information
Processing Standards Publication 186-2, October
2001.

[25] OpenBSD Project. OpenSSH. http://openssh.com/.

[26] H. Orman. The OAKLEY key determination protocol.
RFC2412, November 1998.

[27] A. Perrig, Ran Canetti, J.D.Tygar, and D. Song.
Efficient authentication and signing of multicast
streams over lossy channels. In IEEE Security and
Privacy Symposium, 2000 May.

[28] Reuters. FBI confirms “Magic Lantern” exists.
http://news.com.com/2102-1001-276976.html, 12
December 2001.

[29] Ronald L. Rivest, Adi Shamir, and Lenoard M.
Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of teh
ACM, 21(2):120–126, 1978.

[30] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How
to leak a secret. In ASIACRYPT, pages 552–565, 2001.

[31] Cerulean Studios. Trillian.
http://www.trillian.cc/products/.

[32] T. Ylonen. SSH – secure login connections over the
Internet. In 6th USENIX Security Symposium, pages
37–42, San Jose, CA, July 1996.

[33] P. Zimmermann. The Official PGP User’s Guide. MIT
Press, 1995.

