Processing math: 100%

Elliptic Curves over Finite Fields

Here you can plot the points of an elliptic curve under modular arithmetic (i.e. over Fp).
Enter curve parameters and press 'Draw!' to get the plot and a tabulation of the point additions on this curve.

Note: Since it depends on multiplicative inverses, EC Point addition will only work for prime moduli like 2,3,5,7,11,13,17,19,23,29,31,...,109,... ;-)


Draw the elliptic curve y2=x3+ax+bmodr, where

a: b: r:

01234567891011120123456789101112(0,0)(2,6)(2,7)(3,2)(3,11)(4,4)(4,9)(5,0)(6,1)(6,12)(7,5)(7,8)(8,0)(9,6)(9,7)(10,3)(10,10)(11,4)(11,9)y^2 = x^3 + 1x + 0 mod 1320 points (infinity not shown)

Point Detail

Click/tap on a point in (table or plot) to show details about that point.

Table of Point Additions

+(0,0)(2,6)(2,7)(3,2)(3,11)(4,4)(4,9)(5,0)(6,1)(6,12)(7,5)(7,8)(8,0)(9,6)(9,7)(10,3)(10,10)(11,4)(11,9)
(0,0)(2,6)(2,7)(3,2)(3,11)(4,4)(4,9)(5,0)(6,1)(6,12)(7,5)(7,8)(8,0)(9,6)(9,7)(10,3)(10,10)(11,4)(11,9)
(0,0)(0,0)(7,5)(7,8)(9,7)(9,6)(10,3)(10,10)(8,0)(11,9)(11,4)(2,6)(2,7)(5,0)(3,11)(3,2)(4,4)(4,9)(6,12)(6,1)
(2,6)(2,6)(7,5)(9,7)(11,4)(7,8)(8,0)(6,1)(10,10)(9,6)(4,4)(3,2)(0,0)(4,9)(2,7)(6,12)(5,0)(11,9)(10,3)(3,11)
(2,7)(2,7)(7,8)(9,6)(7,5)(11,9)(6,12)(8,0)(10,3)(4,9)(9,7)(0,0)(3,11)(4,4)(6,1)(2,6)(11,4)(5,0)(3,2)(10,10)
(3,2)(3,2)(9,7)(11,4)(7,5)(4,4)(10,10)(3,11)(6,1)(7,8)(5,0)(6,12)(2,6)(11,9)(0,0)(10,3)(4,9)(9,6)(8,0)(2,7)
(3,11)(3,11)(9,6)(7,8)(11,9)(4,9)(3,2)(10,3)(6,12)(5,0)(7,5)(2,7)(6,1)(11,4)(10,10)(0,0)(9,7)(4,4)(2,6)(8,0)
(4,4)(4,4)(10,3)(8,0)(6,12)(10,10)(3,2)(9,6)(7,8)(2,6)(6,1)(5,0)(11,4)(2,7)(9,7)(4,9)(3,11)(0,0)(11,9)(7,5)
(4,9)(4,9)(10,10)(6,1)(8,0)(3,11)(10,3)(9,7)(7,5)(6,12)(2,7)(11,9)(5,0)(2,6)(4,4)(9,6)(0,0)(3,2)(7,8)(11,4)
(5,0)(5,0)(8,0)(10,10)(10,3)(6,1)(6,12)(7,8)(7,5)(3,2)(3,11)(4,9)(4,4)(0,0)(11,4)(11,9)(2,7)(2,6)(9,6)(9,7)
(6,1)(6,1)(11,9)(9,6)(4,9)(7,8)(5,0)(2,6)(6,12)(3,2)(4,4)(3,11)(10,10)(9,7)(8,0)(2,7)(7,5)(11,4)(0,0)(10,3)
(6,12)(6,12)(11,4)(4,4)(9,7)(5,0)(7,5)(6,1)(2,7)(3,11)(4,9)(10,3)(3,2)(9,6)(2,6)(8,0)(11,9)(7,8)(10,10)(0,0)
(7,5)(7,5)(2,6)(3,2)(0,0)(6,12)(2,7)(5,0)(11,9)(4,9)(3,11)(10,3)(9,7)(10,10)(7,8)(11,4)(8,0)(6,1)(4,4)(9,6)
(7,8)(7,8)(2,7)(0,0)(3,11)(2,6)(6,1)(11,4)(5,0)(4,4)(10,10)(3,2)(9,6)(10,3)(11,9)(7,5)(6,12)(8,0)(9,7)(4,9)
(8,0)(8,0)(5,0)(4,9)(4,4)(11,9)(11,4)(2,7)(2,6)(0,0)(9,7)(9,6)(10,10)(10,3)(6,12)(6,1)(7,8)(7,5)(3,11)(3,2)
(9,6)(9,6)(3,11)(2,7)(6,1)(0,0)(10,10)(9,7)(4,4)(11,4)(8,0)(2,6)(7,8)(11,9)(6,12)(4,9)(3,2)(10,3)(7,5)(5,0)
(9,7)(9,7)(3,2)(6,12)(2,6)(10,3)(0,0)(4,9)(9,6)(11,9)(2,7)(8,0)(11,4)(7,5)(6,1)(4,4)(10,10)(3,11)(5,0)(7,8)
(10,3)(10,3)(4,4)(5,0)(11,4)(4,9)(9,7)(3,11)(0,0)(2,7)(7,5)(11,9)(8,0)(6,12)(7,8)(3,2)(10,10)(9,6)(6,1)(2,6)
(10,10)(10,10)(4,9)(11,9)(5,0)(9,6)(4,4)(0,0)(3,2)(2,6)(11,4)(7,8)(6,1)(8,0)(7,5)(10,3)(3,11)(9,7)(2,7)(6,12)
(11,4)(11,4)(6,12)(10,3)(3,2)(8,0)(2,6)(11,9)(7,8)(9,6)(0,0)(10,10)(4,4)(9,7)(3,11)(7,5)(5,0)(6,1)(2,7)(4,9)
(11,9)(11,9)(6,1)(3,11)(10,10)(2,7)(8,0)(7,5)(11,4)(9,7)(10,3)(0,0)(9,6)(4,9)(3,2)(5,0)(7,8)(2,6)(6,12)(4,4)

(c) Sascha Grau, 2011, 2017